EESS | Electrical energy supply system |
RF | Regression function |
I ⊂ N0 | With \( i,{i}_0,{i}^{\prime },{i}_0^{\prime}\in I \) and \( i,{i}_0^{\prime}\le {i}_0,{i}^{\prime}\le {i}_0^{\prime } \) |
T ⊂ R | With t, t′, ∆t, ∆tR, tA, tE, τ ∈ T and ∆t = t′ − t |
N ⊂ R3 | With \( {x}_i,{x}_i^{\prime },{x}_j,{x}_{n_0}\in N \), pairwise coprime |
ED(t, xi) | Energy demand function; short form \( {E}_i^N(t) \) |
\( {E}_{\mathrm{max}}^D\left({x}_i\right) \) | Maximum energy demand; short form \( {E}_{\max, i}^N(t) \) |
\( {f}_i^D(t) \) | Time-dependent behavior of user i |
ES(t, xi) | Energy supply function; short form \( {E}_i^B(t) \) |
\( {E}_{j_0}^D\frac{(t)}{E_{j_0}^S}(t) \) | Bundled energy demand/supply of j0 microcells |
\( {E}_{\mathrm{Nat}.}^D\frac{(t)}{E_{\mathrm{Nat}.}^S}(t) \) | Energy demand/supply function of a national macrocell |
u | Energy density of the electromagnetic field |
S | Poynting vector |
J | Current density |
E | Electric field strength |
H | Magnetic field strength |
ρ | Electrical charge density |
\( \frac{c_0}{c} \) | Speed of light in vacuum/in a medium |
\( {E}_i^{ST} \) | Stationary supply component of the ith microcell |
ci ∈ R | Stationary state constant of the ith microcell |
\( {E}_{j_0}^{ST} \) | Stationary supply constant of a macrocell |
PS(t, xi) | Output power of the ith source; short form \( {P}_i^B(t) \) |
\( {P}_i^{D_{\mathrm{max}}} \) | Maximum load (power consumption) of the ith microcell |
\( {P}_i^{S_{\mathrm{max}}} \) | Maximum supply (power generation) of the ith microcell |
\( {\dot{P}}^S\left(t,{x}_i\right) \) | Power dynamics of the ith microcell; short form \( {\dot{P}}_i^B(t) \) |
P(j0) | Total power from j0 microcells |
P(k0) | Total power from k0 current sources |
\( {\wp}_{\mathrm{macrocell}}^N \) | Maximum load of a macrocell, analogous to power generation |
\( {\wp}_{\mathrm{Nat}.}^N \) | Maximum load of a national macro cell, analogous to power generation |
S1, …, S5 | Structure variables, components of S∗ |
S∗ ∈ R5 | Technological structure vector |
\( \varDelta {t}_{r_i} \) | Time shift in the ith microcell due to the relativity principle |
\( \varDelta {t}_{s_i} \) | Time shift in the ith microcell considering real sources |
\( \varDelta {t}_{j_0} \) | Total time delay within a macrocell of j0 microcells |
J ⊂ N0 | With j, j0 ∈ J and j ≤ j0 |
K ⊂ N0 | With k, k0 ∈ K and k ≤k0 |
Ν ⊂ N0 | With n, n0 ∈ N and n ≤ n0 |
(N, d) | Metric space on the set N with metric d |
σ | Electrical conductivity |
Ωu ⊂ R4 | Technological solution space with u ∈ Ωu |
\( {\varOmega}_{u_0},{\varOmega}_{u_I},{\varOmega}_{u_{II}} \) | Subsets of the technological solution space |
LE | Unit of length |
r s | Substantial risk factor |
r1, r2 | Sub-risk factors |
μ | Failure factor |
p i | Failure likelihood of the ith microcell |
\( {P}_{i_0} \) | Failure likelihood of a macrocell with i0 users |
S∗∗ ∈ R6 | Extension of the structure vector S∗ with the substantial risk factor |
S 6 | Structure variable for the substantial risk factor |
v tv | Availability |
v tv, B | Sustainability boundary; sustainable availability boundary |
\( {v}_{tv}\bullet {E}_{\mathrm{Nat}.}^D(t) \) | National sustainability |
\( {v}_{tv,n}\bullet {E}_n^D(t) \) | Regional sustainability in a macrocell |
v | State vector with sustainability component |
Ω ∈ R5 | Sustainable technological solution set with |
\( {E}_{T_{\mathrm{Ref}.}}^N \) | Annual energy demand in a reference year |
\( {\lambda}_i^{-} \) | ith supply factor |
\( {\lambda}_{\mathrm{min}}^{-} \) | National supply factor |
h(t) | Distribution of annual energy demand with \( {\int}_{t_0}^{t_0+365}h(t) dt=1 \) |
g(x) ∈ [0; 1] | Weights between \( {\lambda}_{min}^{-} \) and rs |
\( {E}_{T_{\mathrm{Ref}.}}^D \) | Annual reference energy arbitrary initial value \( {\int}_{t_0}^{t_0+365}{E}^D(t) dt \) |