From: Advanced computing to support urban climate neutrality
Model | Year | MAE | Std MAE |
---|---|---|---|
Baseline (Mean) | 16–17 | 39.412 | 0.000 |
Baseline (Mean) | 17–18 | 40.102 | 0.000 |
Baseline (Mean) | 18–19 | 39.945 | 0.000 |
Baseline (Mean) | 19–20 | 40.891 | 0.000 |
Linear regression | 16–17 | 18.042 | 2.165 |
Linear regression | 17–18 | 19.532 | 2.277 |
Linear regression | 18–19 | 17.924 | 2.383 |
Linear regression | 19–20 | 17.642 | 2.014 |
Random forest | 16–17 | 12.624 | 2.982 |
Random forest | 17–18 | 22.632 | 6.232 |
Random forest | 18–19 | 16.832 | 2.945 |
Random forest | 19–20 | 13.989 | 2.593 |
Neural network | 16–17 | 9.192 | 1.082 |
Neural network | 17–18 | 11.892 | 1.347 |
Neural network | 18–19 | 10.720 | 1.998 |
Neural network | 19–20 | 10.204 | 0.934 |
AutoGluon | 16–17 | 8.623 | 1.065 |
AutoGluon | 17–18 | 10.792 | 1.492 |
AutoGluon | 18–19 | 10.261 | 1.890 |
AutoGluon | 19–20 | 9.409 | 0.952 |