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Abstract

Background: The synthesis of 2-hydroxyisobutyric acid (2-HIB), a promising building block for, e.g., PlexiglasW

production, is described as an example for a clean and sustainable bioproduction.

Methods: A derivative strain of Cupriavidus necator H16, impaired in the poly-ß-hydroxybutyrate synthesis pathway
and equipped with xenogenic 2-hydroxyisobutyryl-coenzyme A mutase from Aquincola tertiaricarbonis L108, was
applied. Batch cultivation was performed in the presence of vitamin B12 by supplying a gas mixture comprising
hydrogen, oxygen, and carbon dioxide.

Results: Exploiting the chemo-litho-autotrophic potential of this so-called knallgas bacterium, 2-HIB was synthesized
and excreted into the cultivation broth under aerobic conditions when inorganic nitrogen-limited conditions allowed an
overflow metabolism of carbon metabolites. 2-HIB synthesis proceeded at a rate of 8.58 mg/[(g bacterial dry mass)�h].
Approximately 400 mg/L in total was obtained. The results were subsequently compared to calculated model data to
evaluate the efficiency of the conversion of the substrates into the product. To achieve overall yield data regarding the
substrate conversion, the model describes an integral process which includes both 2-HIB synthesis and biomass
formation.

Conclusions: This study has confirmed the feasibility of the microbial synthesis of the bulk chemical 2-HIB from
hydrogen and carbon dioxide by exploiting the chemo-litho-autotrophic metabolism of C. necator H16 PHB−4,
additionally expressing the foreign 2-HIB-coenzyme A mutase. The product synthesis was satisfying as a proof of
principle but does not yet approach the maximum value as derived from the model data. Furthermore, the biosynthesis
potential of an optimized process is discussed in view of its technical application.
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Background
A growing global population and rising living standards
inevitably enforce the conflict between satisfying the
people's demands for goods and services, on one hand,
and the sustainable development requirements and the
considerate treatment of nature and earth's resources,
on the other. It is not only that fossil carbon sources will
become limited in the future, but there is also a growing
pressure to renounce the exploitation of currently trea-
ted and prospected sites for environmental reasons.
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Accidents, such as the recent oil disaster in the Gulf of
Mexico, motivate this tendency even more. To stop the
rigorous and reckless exploitation of the earth's resources,
alternative resources must be recovered, and clean techni-
ques have to be developed, offered, and applied. The turn-
around in thinking and acting has been already evident in
recent times, mostly with respect to energy production, for
which sustainable resources and clean techniques are in-
creasingly implemented to substitute today's oil and coal-
based production [1].
Likewise to the issue of clean energy production, a

change is necessary in the societies' approach of how to
improve the future production of commodities [2-4].
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Thereby, industrial (white/green) biotechnology offers
an elegant way to provide alternatives [5-7] via the ap-
plication of microorganisms or components of cells in
combination with a broad spectrum of new-generation
renewable substrates.
Applying biotechnological processes, the chemical in-

dustry has for ages produced, for instance, alcohols and
organic acids mainly to be employed as chemicals, but
above all as energy carriers in bulk quantities. Of those,
bioethanol [8-11] is a recent example of modern fuels
for motor vehicles [12], while biobutanol is expected to
be another one [13,14]. Based on this knowledge of how
to produce bulk-scale energy carriers, recent intentions
envisage the extension of platform chemicals for wider
applications [13,15-18]. Special attempts are directed
towards the synthesis of chemicals, such as 1,3-propane-
diol [19], succinate [20], gluconic acid [21-23], or citric
acid [24]. Likewise, 2-hydroxyisobutyric acid (2-HIB) fits
well into this scheme as it is gaining importance as a
platform chemical. In particular, it can be used as a pre-
cursor for methacrylic acid [15,25], a monomeric com-
pound required for the synthesis of such prominent
products like PlexiglasW (Evonik Röhm GmbH, Essen,
Germany) and as an important ingredient for coating
materials, paint, and glues.
In general, traditional biotechnological processes, such

as those for bioethanol production, are based on carbon
sources of the so-called first generation, i.e., carbohy-
drates such as sugars or starches directly derived from
plants [26]. Nowadays, the focus has shifted to second-
generation feed stocks [11,27], which rely on complex
plant materials, such as cellulose, hemicellulose, and lig-
nin; the monomers of which are, however, more difficult
to access [28], especially in terms of biosynthesis. Add-
itionally, the concept of using arable land to grow plants
solely as substrate resources for biotechnological pro-
cesses is a matter of controversial debate, not only in
view of substituting natural biotopes (e.g., rain forests)
by monocultures [29], but also in view of reasonable
conflicts with nutritional issues and the food production
industry [30,31].
One solution and actual expectation in terms of a fu-

ture sustainable bulk chemical production is the
utilization of substrates of the third generation, i.e.,
diverse gas mixtures which deliver carbon as well as re-
ducing power from different sources [4,32,33]. This im-
plies the utilization of CO2 as a carbon source since
CO2 accumulates as a waste product of energy produc-
tion from fossil resources. At the same time, the result-
ing consumption of CO2 within such a new production
scheme also provides a fundamental argument to sup-
port processes that counteract climate change [13,34].
The required reducing power might be delivered by
hydrogen generated, e.g., by solar energy [35] or wind
power [36]. Some perspectives of how to use CO2, not
only as a substrate for diverse syntheses, but also for
various biosyntheses, have recently been presented at
the Dechema colloquium [37,38]. Among others, the
processes developed by Coskata Inc., Illinois, USA,
employing a variety of materials which can be converted
into renewable fuels and chemicals by biofermentation
of synthesis gas, have been demonstrated. Also, the de-
velopment of special designer bugs, being capable of
using flue gas as a substrate, has been introduced at the
colloquium Sustainable Bioeconomy [39]. However, the
biggest challenge of those miscellaneous approaches is
and will be the competition with the established pro-
cesses and the implemented production schemes of the
chemical industry [3,31,40], where the biobased synthe-
sis is often still defeated. Nevertheless, in this investiga-
tion, another perspective of how to use CO2 to sustainably
produce 2-HIB as a building block is presented.
We recently discovered a novel enzyme, the 2-HIB-

coenzyme A mutase, which proves to be an ideal catalyst
for the production of 2-HIB, especially, given that 2-HIB
synthesis with this enzyme only requires a one-step isomer-
ization of metabolites that are essential for the metabolism
of a wide range of bacteria, i.e., 3-hydroxybutyryl-coenzyme
A (3-HB-CoA) [25,41-44]. The synthesis of 2-HIB and its
excretion into the cultivation broth can be realized by
employing strains that express this heterologous enzyme in
combination with an existing overflow carbon metabolism.
The selection of suitable strains thus allows different sub-
strates for the production of 2-HIB to be utilized, as has
been demonstrated by using fructose [45, D Przybylski, un-
published work]. However, in seeking sustainability, the
application of fructose, a substrate of the first generation,
will not meet the requirements to qualify carbohydrates as
future substrates.
Therefore, we have applied the 2-HIB-coenzyme A

mutase to demonstrate the sustainable and clean pro-
duction of 2-HIB from carbon dioxide and hydrogen by
exploiting the chemo-litho-autotrophic metabolism of
the knallgas bacterium Cupriavidus necator (Alcaligenes
eutrophus) H16 PHB−4 [46,47]. The synthesis of 2-HIB
was successful at the experimental proof of principle
stage. Model data were added to confirm the metabolic
potential of such a process.

Methods
Bacterial strains and plasmids
C. necator, strain H16 PHB−4 DSM 541 [47], was obtained
from the DSMZ (Leibniz-Institut DSMZ - Deutsche
Sammlung von Mikroorganismen und Zellkulturen GmbH,
Braunschweig, Germany) and modified by introducing the
plasmid pBBR1MCS-2::HCM [48], which originates from
the broad-host-range cloning vector pBBR1MCS [49]. The
plasmid contains the genes hcmA and hcmB coding for the
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two subunits of the 2-hydroxy-isobutyryl-coenzyme A
mutase from Aquincola tertiaricarbonis L108 [41,44]. The
plasmid was kindly provided by Evonik Industries AG
(Marl, Germany).
Cultivation conditions
The general cultivation was performed in Luria Bertani
broth (Miller) at 30°C, and the strain was stored on LB-
agar plates at 4°C. For batch cultivations, a mineral salt
medium was used, as described by Schlegel and co-
authors [50] supplied with 0.3 mg/L kanamycin and 50
mg/L vitamin B12.
The pre-cultures were prepared from single colonies

at 30°C and 150 rounds per minute (rpm) in 200 mL
of the same medium with fructose as the sole carbon
source under aerobic conditions. After fructose ex-
haustion, the pre-culture was used to inoculate a
fresh culture which was immediately shifted to hydro-
gen and carbon dioxide. The cultivation continued in
a batchwise manner under laboratory conditions at
22°C, using a shake flask equipped with a stirrer and
containing a working volume of 0.6 L, gassed with a
sterile mixture of H2:O2:CO2 in variable ratios. Agita-
tion was set to 200 rpm. The two gases apart from
oxygen were supplied from a storage tank with a vol-
ume of 18 L treated according to the gasometer
principle. The initial gas concentrations were about
25% to 50%H2, 15% to 30% CO2, and 10% to 20%
O2. The gases were supplied to the culture by a hol-
low fiber module (Fresenius, St. Wendel, Germany),
using a membrane pump at a feeding rate of 750
mL/min moving a gas circuit. Hollow fibers had a
pore width of 0.2 μm and a specific exchange area of
0.7 m2. The external volume of the hollow fiber mod-
ule was flushed with the bacterial suspension at a rate
of 42.6 L/h, fed with a gear pump out of the shake
flask. After passage through the module, the gases
and the suspension were collected in the flask and
separated from each other. The gases were recircu-
lated to the gas tank and mixed with the residing
gases by a propeller by means of a magnet-coupled
motor installed outside of the tank, whereas the sus-
pension was re-fed to the module. The consumption
of gases was monitored both in terms of the change
of the total volume, which was registered by the hori-
zontal movement of the gas tank, and in terms of the
concentration measured by three specific sensors. If
required, specific gases were refilled into the gas tank.
As there was no automated pH control in this simpli-
fied cultivation system, the pH was monitored off-line
and adjusted to pH 7.0 by adding the required
volumes of 10% NaOH according to a titration curve
based on the growth medium.
On-line analysis
The gas concentrations were measured by specific sensors
for hydrogen (0% to 100%), oxygen (0% to 100%), and
carbon dioxide (0% to 50%) (BlueSens, Herten, Germany)
and were continuously monitored.

Off-line analysis
The biomass concentration was monitored by the optical
density at 700 nm (U-2000 Spectrophotometer, Hitachi
High-Technologies Corporation, Tokyo, Japan) and con-
verted into bacterial dry mass according to a calibration
curve prepared earlier. The substrate consumption and 2-
HIB synthesis were analyzed by isocratic HPLC (Shimadzu
Corporation, Kyoto, Japan) using a Nucleogel Ion 300 OA
column (300×7.8 mm, Macherey-Nagel GmbH & Co. KG,
Düren, Germany) at 70°C with 0.6 mL/min 0.01 N H2SO4

as the eluant.

Evaluation methods
The gas consumption was calculated from the differen-
tial changes of the total and individual gas concentra-
tions by means of simple linear regression for the
different phases of the fermentation.

Calculations
3-Phosphoglycerate (PGA) was defined as the central
carbon precursor [51,52] from which the complete bio-
mass synthesis was derived. The molar composition of
the biomass in the model was taken as C4H8O2N. It is
synthesized from adenosine triphosphate (ATP) as the
general energy carrier and proceeds with an efficiency of
10.5 g bacterial dry mass pro mol ATP [53]. The overall
balance equation for the biomass synthesis from PGA is
as follows:

4PGAþ 29:1ATPþ 3NH3

þ5:5½2H� ! 3C4H8O2Nþ 10H2O:

ð1Þ

[2H] denotes the reduction equivalents, which in gen-
eral correspond to reduced nicotinamide adenine di-
nucleotide (phosphate) {NAD(P)H+H+}.

Results and discussion
Theoretical product yields
To define the possible product yields in a growth-
associated process, we applied a stoichiometric model.
Knallgas bacteria such as C. necator use the Calvin cycle
to assimilate carbon and the enzyme hydrogenase to
gain NAD(P)H+H+ from hydrogen as a substrate for
the oxidative phosphorylation via the respiratory chain
as well as a source for carbon dioxide reduction. There-
fore, the overall balance equation for biomass synthesis
via PGA including the energy generation from H2

oxidation at a degree of coupling in the oxidative
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phosphorylation by the respiratory chain of P/O = 2
results in

12CO2 þ 3NH3 þ 56:05½H2�
þ15:28O2 ! 3C4H8O2Nþ 48:55H2O:

ð2Þ

With respect to growth, this corresponds to a carbon
conversion efficiency (CCE) of one molecule of carbon
(Cmol) incorporated per Cmol supplied and a hydrogen
conversion efficiency (HCE) of 0.214 molecules of
hydrogen (Hmol) assimilated per Hmol consumed. The
synthesis of 2-HIB (C4H8O3) as the desired product via
the Calvin cycle with PGA and pyruvate as intermedi-
ates results in acetyl-CoA (AcCoA) according to

4CO2 þ 8½H2� þ 14ATP ! 2AcCoAþ 4H2O: ð3aÞ
The ATP required for CO2 fixation is obtained from

hydrogen oxidation via the respiratory chain; accord-
ingly, Equation 3a is extended to

4CO2 þ 16½H2� þ 3:5O2 ! 2�HIBþ 12H2O: ð3bÞ
The CCE is again 1 Cmol/Cmol, whereas the theoretical

HCE is 0.25 Hmol/Hmol (Equation 3b). Combining biomass
synthesis and product formation to an integral process, the
interdependency between both processes defining the final
HCE with respect to the product is shown in Figure 1. We
took into account two ranges of biomass concentrations
(from 0 to 10 g/L and from 10 to 60 g/L) to consider a wide
spectrum of variables. Obviously, biomass synthesis is very
costly (Equation 2). It is apparent that the overall process
approaches a value of 0.2 to 0.25 Hmol/Hmol, when the bio-
mass concentration is below 10 g/L, and the product
concentration moves towards 100 g/L (Figure 1). Both the
Figure 1 HCE model data. Calculated data for HCE out of biomass concent
increase in biomass and the reduction of product concen-
tration drastically decrease the HCE.
Experimental data: growth
The growth characteristics under chemo-litho-autotrophic
conditions were examined, thereby displaying a rate of
about 0.066/h, which is lower by a factor of about 4 com-
pared to an optimized cultivation regime for the cultivation
of C. necator H16 [47,54-56]. Rates reduced by a factor of
about 2 are expected, when applying lower temperatures,
22°C in our case compared to 31°C used by former authors.
Moreover, the polyhydroxyalkanoate (PHA) synthesis-
deficient mutant strain was shown to have a reduced
hydrogen oxidation rate compared to the wild type [57].
We used a closed circuit system to recycle the gases in
combination with a hollow fiber module as an interface be-
tween the gases and the liquid phase for safety reasons due
to the explosive character of the gas mixture and due to the
necessity of enabling elevated gas transfer conditions under
those simplified cultivation conditions. This system has
not been further optimized with respect to the trans-
fer rates of the various substrates. Nevertheless, the
exponential growth pattern indicates that the sub-
strate supply was not limiting for the biomass con-
centration applied (Figure 2). Moreover, the results
suggest that the cultivation system chosen is in fact
adequately efficient in delivering the gaseous sub-
strates for the product synthesis.
Experimental data: product formation
We used the strain C. necator H16 PHB−4 [47], a PHA-
negative mutant, in which the poly-β-hydroxybutyric acid
rations of 0 to 60 g/L and 2-HIB product concentrations of 0 to 100 g/L.



Figure 2 Experimental data for growth and product synthesis of C. necator H16 PHB−4 (pBBR1MCS-2::HCM) in chemo-litho-autotrophic
fermentation. Growth phase (0 to 60 h) and product synthesis phase (60 to 160 h) with biomass (blue circle) and 2-HIB (red star) in g/L.
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(PHB) synthesis is blocked subsequent to the synthesis of
3-HB-CoA. Introduction of the 2-HIB-CoA mutase from
A. tertiaricarbonis allowed this strain to synthesize meta-
bolites up to 3-HB-CoA under conditions of overflow
metabolism favoring 2-HIB synthesis through the simul-
taneous expression of the 2-HIB-CoA mutase. Thereby,
an alternative route ensuing 3-HB-CoA is established to
finally yield the desired dead-end product, 2-HIB. To con-
firm the capacity of the chosen system for 2-HIB synthe-
sis, a fructose pre-grown culture was used to inoculate the
cultivation apparatus. A gas stream containing 25% to
50%H2, 15% to 30% CO2, and 10% to 20% O2 was sup-
plied as a growth substrate, resulting in the induction of
the enzymes required for chemo-litho-autotrophic growth,
especially hydrogenases [58,59], and for carbon dioxide
fixation [60]. Under these conditions, growth proceeded at
a rate of about 0.066/h until the nitrogen source was
exhausted, attaining a final biomass concentration of ap-
proximately 2.0 g/L (Figure 2). During exponential
growth, carbon dioxide was incorporated into the biomass
with a CCE of 0.58 Cmol/Cmol. The hydrogen conversion
yielded a HCE of 0.0715 Hmol/Hmol. It should be noted
that it is not possible to achieve the theoretically max-
imum value of the HCE of 0.214 Hmol/Hmol due to the
required energy (H2) necessary for maintenance purposes.
Larger deviations from the theoretical values might be
caused by the synthesis of side products other than bio-
mass, such as pyruvate [57,61], 3-hydroxybutyric acid,
acetone, or 2-oxoglutarate [62,63] depending on the cul-
ture conditions applied. More detailed analyses, however,
were not undertaken at this stage of the investigation.
During growth, 2-HIB was found, but only at low con-

centrations. After exhaustion of the nitrogen source,
however, there was a steep increase in the external 2-
HIB concentration (Figure 2). The synthesis rate
corresponded to 8.58 mg 2-HIB/[(g bacterial dry mass)�
h]. This rate was stable up to a total concentration of ap-
proximately 410 mg/L. Subsequently, the product syn-
thesis rate suddenly ceased, which was also observed in
repeated experiments. The abrupt shift pointed to a dis-
tinct limitation or disturbance, which was not evident in
the experimental setup. This would require a further
optimization.
As described above, the amount of gases consumed per

increment of 2-HIB was used to calculate the yield coeffi-
cients. The data were corrected for the unspecific loss of
gases determined by running experiments in the absence
of biomass. The remaining substrate was incorporated into
2-HIB with a CCE of 0.178 Cmol/Cmol. Hydrogen as a
second substrate was converted into this product with a
HCE of 0.032 Hmol/Hmol. Noticeably, this is far from the
above stated limit values.
The present rates of 2-HIB synthesis with the mutant

strain H16 PBH−4 (pBBR1MCS-2::HCM) were somewhat
lower than those found for the formation of PHB with the
wild type strain of C. necator H16 under chemo-litho-
autotrophic conditions yielding up to 12.8 mg/[(g bacterial
dry mass)�h] [64,65]. It is known, however, that the lack of
the PHB polymerase (PhaC) activity in this mutant strain is
associated with distinctly lower activities of β-ketothiolase
(PhaA) and acetoacetyl-CoA reductase (PhaB) [66].

Deficits in product synthesis
The deficit in the gain of 2-HIB can likely be explained in
part by the putative synthesis of products other than 2-HIB
[57,61,63]. Taking into account the reduction of CO2 by
hydrogen to yield the first intermediate of carbon fixation
in the Calvin cycle, glyceraldehyde-3-phosphate (GAP,
C3H6O3, phosphate-free sum formula), the CO2 available
due to the present consumption characteristic will allow
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for the synthesis of 0.57 mmol GAP/h in the linear phase
of 2-HIB formation. This in turn requires 5.16 mmol H2/h
based on

3CO2 þ 9½H2� þ 1:5O2

! GAPðC3H6O3Þ þ 6H2O:

ð4Þ

Due to the hydrogen balance, 5.71 mmol H2 remain
available after 2-HIB synthesis which could satisfy the pu-
tative product synthesis. Hence, some hydrogen remains
additionally available for maintenance purposes which are
inevitably necessary in living cells. Taking into account the
specific maintenance coefficient determined formerly for
Ralstonia eutropha (C. necator) JMP 134 on fructose of
ms = 0.09 mmol/[(g bacterial dry mass)�h] [67] and convert-
ing this substrate-based coefficient into an energy (ATP)-
based value (P/O=2) which would be equivalent to
me = 2.34 mmol ATP/[(g bacterial dry mass)�h], the
hydrogen remaining after the synthesis of 2-HIB and
other putative reduced products would be sufficient
to generate 2.8 mmol ATP/[(g bacterial dry mass)�h].
This is in pretty coincidence with former results
regarding this species [67].

Conclusions
The present results can be regarded as a proof of principle
demonstrating the feasibility of 2-HIB synthesis under
chemo-litho-autotrophic conditions. Since the yield is still
far from technological dimensions, the optimization of this
process is necessary to improve its stability with the aim to
increase the productivity. This would require a prolonged
product synthesis, higher rates, and, in particular, better
yields.
Under laboratory and chemo-litho-autotrophic condi-

tions, a 2-HIB synthesis rate of 8.58 mg/[(g bacterial dry
mass)�h] was achieved, yielding a final concentration of
about 0.4 g/L. The efficiency of this production scheme
on the basis of sustainable substrates becomes even
more obvious when being compared to the derived rates
of 2-HIB formation obtained with the same transgenic
strain expressing the 2-HIB mutase and being cultivated
under aerobic conditions in a controlled fermenter on
fructose as the sole substrate. In the latter case, rates of
around 5.8 to 7.2 mg 2-HIB/[(g bacterial dry mass)�h] were
obtained [45, D Przybylski, unpublished work].
The HCE during product synthesis yielded 0.03 Hmol/

Hmol, which is distinctly lower than the theoretical value
(0.25 Hmol/Hmol). CO2 was incorporated into 2-HIB with
an efficiency of 0.18 Cmol/Cmol. The discrepancies are
not evident at present but are likely to be explained by add-
itional products formed apart from 2-HIB. This follows
from the fact that the available amounts of CO2 and H2,
remaining after 2-HIB synthesis, are sufficient to generate
reduced primary products (GAP) in the Calvin cycle in an
almost stoichiometric manner (cf. Equation 4).
With respect to the overall yield of the 2-HIB synthesis

determined in the present investigation, we extracted a
substrate conversion efficiency with a total of 0.103 Cmol/
Cmol by taking into account biomass synthesis. This
resembles about 63% of the theoretically possible value
(0.164 Cmol/Cmol) at the respective biomass (2 g/L) and
product concentration (0.4 g/L) according to the treatment
of the data as shown in Figure 1. With regard to HCE, the
experimental integral value amounted to 0.002 Hmol/
Hmol, which is only about 5.5% of the theoretical value
with 0.036 Hmol/Hmol. The absolute output of substrate
is far too low. This is essentially caused by the low gain of
the desired product and an improper ratio between bio-
mass and product concentration.
A question remaining to be solved is the prolonged syn-

thesis of 2-HIB since the present experiment showed a
more or less abrupt halt of product synthesis. The reasons
for that have to be thoroughly examined in order to be
possibly eliminated in future experiments.
The present investigation was performed under labora-

tory conditions in a 0.6-L dimension and at a low
biomass concentration of around 2 g/L. Upscaling will il-
lustrate the potential of such a biobased process. Based
on the specific rate of 8.58 mg 2-HIB/[(g bacterial dry
mass)�h] found in the present investigation, a process
extrapolated to the cubic meter dimension would there-
fore result in the synthesis of approximately 200 g 2-HIB
/(m3 d) by applying 1 kg of biomass. Using 10 kg of bio-
mass and a 10-m3 scale, the output will be 20 kg/day,
which corresponds to a production on a semi-technical
scale. In general, the chemical industry operates reac-
tors with a size of 1,000 m3 and larger. Due to the
obvious reasons, more and more processes will and
already do involve gases and thus require experience
in handling explosive mixtures. They will not likely in-
volve a membrane technology, as has been used here for
safety reasons. Consequently, amounts of tons per day are
imaginable without relying on unrealistic assumptions.
Higher biomass concentrations will have an even higher
impact on the productivity of such a process. In this case,
the efficiency of the conversion of the substrates to the
final product has to be considered (see Figure 1). An in-
crease in biomass concentration will consequently result in
a diminished efficiency of the product synthesis. An
optimization at this stage will include considerations
about rate versus yield, subsequently leading to deci-
sions based on economic figures.
Another important factor not to be neglected in this con-

text is the usability/durability of the catalyst biomass. The
present case assumes a discontinuous production regime
since organic acids, as the envisaged product 2-HIB, are in
general toxic to microorganisms at higher concentrations
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[68-72], e.g., acetic acid being inhibitive above concentra-
tions of 6 g/L [73], which is well below the desired product
concentration range. However, no thorough investigations
with respect to matters of 2-HIB product inhibition have
been undertaken at this stage of investigation. But as acid
toxicity will have an impact and therefore has to be consid-
ered, continuous extraction offers the possibility to reduce
the current acid concentration in the production broth with
the effect of maintaining the activity of the cells and thus
extending the production time. Moreover, a continuous
process with intermittent periods of growth to regenerate
the catalyst biomass should be considered. Such measures
and their effects, however, require detailed investigations
which are outside the scope of the present investigation.
The yearly production of PlexiglasW amounts to 3 million

tons and is based exclusively on fossil carbon sources. How-
ever, it is not imaginable that a process as described here will
substitute the established processes in the near future, but
the actual constellations contribute to a turnaround in the
favor of alternative processes relying on gases. Production
and storage of hydrogen on the basis of electricity generated
by solar techniques and wind energy is state of the art and
will increase in its dimension [35,36,74]. Carbon dioxide, on
the other hand, is an unavoidable result of energy production
from fossil carbon sources. As the actual discussions address
the question of how to get rid of this climate change driver,
the removal of this compound from exhaust gases in energy
plants and its deposition are currently argued for, and legisla-
tion will find ways to implement such solutions. Above all,
those factors emphasize even more the necessity of a turn
in thinking regarding the handling of our resources while
supporting new ideas and developments to move in the
direction suggested in this investigation. Moreover, gases
derived from biomass, i.e., synthesis gas comprised of
hydrogen and carbon monoxide as a result of pyrolysis
[4,75,76], are yet another source for product syntheses as
the one described here. Adequate pathways are found in
diverse microorganisms, such as in anaerobic clostridia.
Forthcoming models following the idea of sustainable
product synthesis could be directed towards methane as a
potential substrate [4] as well, which may be derived from
biogas plants or received as a conversion product out of
synthesis gas and methanol as its oxidized derivative. The
basic metabolic potentials to convert those substrates are
available in the respective microorganisms. The decision
regarding the kind of substrate to be used for an envisaged
product synthesis depends on technological and physio-
logical properties. The final decision then depends on the
degree of the required refinement of the educts, which in
turn is a question of the effectiveness of substrate conver-
sion and the price of the final product [67].
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