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Abstract

Background: Understanding the response of nitrogen fluxes to changes in land use and agricultural practices is
crucial for improving the instream water quality prediction. In central Germany, the expansion of bioenergy crops
during the last decade led to an increase in fertiliser application rates. The purpose of this study is to investigate the
effect of agricultural management changes on the stream nitrogen load of a drinking water reservoir catchment
(Weida, 99.5 km2) using a hydrological water quality model.

Methods: The semi-distributed hydrological water quality model—the HYdrological Predictions for the Environment
(HYPE)—was calibrated and validated successfully for discharge and nitrate-N concentrations during the period
1997–2003 (the lowest discharge Nash-Sutcliffe efficiency (NSE) was 0.78). Subsequently, stream nitrogen load of
six different land use scenarios and their associated agricultural practice changes were compared to the baseline
simulations of the period 2006–2009. Some of these scenarios were designed considering the increased cultivation of
bioenergy crops.

Results: Results revealed that an increase in mineral fertiliser by 20 % for all crops augmented an increase of monthly
stream nitrogen loads in the range of 2–6 % compared to the baseline simulations. Also, it was found that stream
nitrogen load increased in scenarios where all or some crop areas were converted to maize and rape, which are the
established bioenergy crops in Germany. The increase of nitrogen load resulting from these scenarios differed in terms
of magnitude and their temporal patterns, reflecting the importance of timing, the amount of fertiliser applications,
and harvesting periods. However, results showed that nitrogen load was reduced in situations when only organic
farming or summer barley was used and when rape and maize cropping areas were converted to winter wheat.

Conclusions: In this intensively used agricultural catchment, the simulated stream nitrate-N loads quickly responded to
fertiliser application changes (increase/decrease). This rapid response could be explained by short residence time of the
interflow and baseflow runoff components because of the hardrock geological properties of the catchment.
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Background
Bioenergy plants can play an important role in fulfilling
the world’s increasing energy demand, by mitigating cli-
mate change—mainly through the reduction of green-
house gas (GHG) emissions—improving socio-economic

equity and preserving the biodiversity [1–3]. During the
last decades, Germany has set the goal of adopting a
modern, environment-friendly and sustainable supply of
energy by expanding renewable energy [4]. This initiative
is integrated with that of the European Union (EU),
which, by 2020, aims to lower the GHG emissions and
energy consumption by 20 % and also aims to cover
20 % of energy needs by using renewable energy [4, 5].
Within this framework, the member states of the EU
have defined their own national targets and strategies.
Among these, Germany is determined to increase the
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share of its energy from renewable resources to achieve
18 % [6] and consequently reduce the GHG emissions
by at least 40 %, by 2020, as compared to its use in 1990
[4]. In Germany, bioenergy represents the greatest con-
tribution to all regenerative energy sources (about 66 %
in 2012, where energy crops supply only a minor share
of it) and will continue playing an essential role in future
energy supply as well. However, to fulfil the increasing
energy demands, sustainability is a key factor in develop-
ing an appropriate national bioenergy industry, especially
concerning the ability to produce enough biomass with-
out environmental decline [7, 8].
The impact of bioenergy practices on water resources

currently involves the conversion of agricultural land,
originally used for food production, to grow bioenergy
crops. In Germany, arable land that has been converted
to grow bioenergy crops is about 21 % in 2012, and this
share has been projected to achieve ranges of 24–29 %
and 27–34 % by 2020 and 2030, respectively [9]. For in-
stance, the area of land cultivated with maize (Zea
mays)—which is well known as the best actual biogas
feedstock—has increased considerably over the recent
years in Germany [10], and it ranks as the third import-
ant crop [11]. Agriculture is responsible for the largest
contribution of non-point nitrogen source pollution in
Germany [12, 13]. For the continued cultivation of bioe-
nergy crops, feedstock production will require increased
fertiliser input, which may have environmental implica-
tions [14, 15]. For example, maize requires more fertili-
sers than other crops [16], even though it can use the
mineral and organic fertiliser effectively [17]. The effects
of bioenergy crops on water quality are either positive or
negative, and their magnitude depends on the local and
regional factors, such as types of land use, topography,
soils, climatic conditions, irrigation and agricultural
management [18–20]. For instance, a study of the im-
pact of switching a million hectares of pastures and hay
lands to energy crops (mainly switchgrass and corn sto-
ver) on the water quality in the Upper Mississippi River
showed an ambivalent effect [19]. The energy crops
significantly increased the suspended sediment and its
associated instream total phosphorus, while it decreased
the nitrate loads. This was attributed in part to the
nitrogen uptake from the soil by the improved energy
crops. Also, this was explained by the decreased nitrogen
transport and reduction of denitrification losses because
of the reduced flow and soil moisture, respectively [19].
However, the conversation of pastures to row crops (i.e.
maize) increased the eroded suspended sediment, espe-
cially after crop harvest, which in turn resulted in high
instream phosphorus loading. Therefore, it was impera-
tive to evaluate the agriculture land use changes result-
ing from these bioenergy strategies and its effect on the
regional water quality, especially in a region like central

Germany, an area where the land use was agriculture-
dominant and had experienced increased biofuel pro-
duction during the previous years.
Numerous studies have shown that changes in land

cover/use significantly affect the hydrological regime,
which in turn influences the surface and groundwater
quality. It is known that at the catchment scale, hydro-
logical modelling is a favourable tool for discharge and nu-
trient transport (such as nitrogen and phosphorus)
predictions. Simulation models such as the Soil and Water
Assessment Tool (SWAT) model (e.g. [21, 22]) and other
models such as the Jena Adaptive Modelling System
(JAMS) [23] have been increasingly applied to study the
impact of agricultural management practices on soil,
groundwater and instream water quality through scenario
analysis. For instance, the impact of conservation tillage
and intercropping buffer strips was quantified in two wa-
tersheds in central Iowa in the USA [24]. In addition, the
SWAT model was used to predict the possible long-term
effects of large scale bioenergy cropping system expansion
on soil and water quality using different land use and crop
rotation scenarios [14, 15, 25–27]. Among these models,
the HYdrological Predictions for the Environment (HYPE)
model is a spatially semi-distributed and process-based
hydrological water quality model [28]. The HYPE model
simulates discharge and nutrient concentrations based on
commonly available and easily measurable agriculture
practices and climate data (precipitation and air
temperature). The HYPE model maintains a good balance
between model complexity and representation of internal
hydrological water quality routines, such as nutrient trans-
port and transformation processes [29]. It has been shown
that the HYPE model can represent the measured hydro-
logical response and its associated geochemical compo-
nents in a consistent manner in catchment areas with
different physiographic characteristics [28–31]. It has also
been shown that for model parameter identification, the
multi-objective calibration approach is more efficient
compared to the stepwise calibration technique, which is
traditionally used for hydrological water quality modelling
(e.g. [32, 33]). Thus, including the water quality observa-
tions into the hydrological parameter identification helps
to better identify the flow partitioning into surface flow,
interflow and groundwater components, which are essen-
tial for acquiring accurate water quality parameters [34].
As mentioned earlier, it is important to understand the
hydrological water quality response to land use changes
when taking the bioenergy policies into account, in central
Germany. Therefore, the objective of this study is twofold:
(i) to evaluate the agricultural land changes that have oc-
curred at the Weida catchment area after the adop-
tion of the bioenergy strategies and (ii) to assess the
implications of the bioenergy-related aspects on the
instream nitrogen loads.
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Methods
Study areas
The selected catchment area for this study is Weida
(99.5 km2), which is one small tributary of the Elbe river
basin and is located in Thuringian state, in Germany
(Fig. 1). The dominating land use classes of the Weida
catchment area are arable land (40 %), forest (29 %) and
pastures (26 %), which are all located in a low-mountain
range (elevation between 357 and 552 m). Considering
the whole catchment area, no clear spatial pattern of
dominant land use can be observed; rather, the whole
river basin is characterised by a mixture of the three
most dominant land use classes (Fig. 1). The Weida river
basin has one gauging station at the catchment outlet
(Laewitz, Fig. 1), where discharge and nitrate-N concen-
trations are measured. The Weida catchment feeds into
the Zeulenroda and Weida drinking water reservoirs
[35, 36]. These reservoirs are part of the Thuringia remote
water supply system, which have also received variable

flow from the Loessau reservoir during the period 1994–
2004. It is located outside of the Weida catchment area
(Fig. 1). The geology of Weida is dominated by clay,
schists and eruptive rocks, where most of these rocks have
low permeability [36]. This geological feature induces the
quick flow to be the dominant runoff component in the
Weida catchment. It has been reported that the bedrock
range has developed from shallow rankers to well-
developed cambisols and fluvisols in the stream valleys
[35]. In this catchment area, sandy loam and silty loam are
the most dominant soil classes (Table 1). In this study, five
precipitation stations have been considered, where the
mean annual precipitation rate is about 640 mm based on
the measurement during the period 1988–2004. The mean
annual temperature is about 7 °C in the Weida catchment.
The long-term mean discharge at the outlet Laewitz
gauging station is about 0.72 m3 s−1. In this catchment,
nutrient inputs from agricultural land represent the main
instream eutrophication sources. The dominant crops are

Fig. 1 Overview of the geographical location and elevation of the Weida catchment (a). Further catchment characteristics are given in Table 1.
The dominant land uses and their spatial distribution are illustrated in (b). Considering the whole Weida catchment, no clear area-based land
use-dominant class is observed rather than nearly uniform distributed land use classes
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winter wheat, winter and summer barley, rape, maize
and grassland. The average fertiliser application rates
(organic and mineral) are listed in Table 2 [35]. In
the Weida catchment, both discharge and nitrate-N
concentration data are characterised by high seasonal
variability, where higher values occur during the wet
period (October–April) and lower values are observed
during the dry period (May–September). The mean
instream nitrate-N concentrations are 8.80, 9.93 and
8.76 mg l−1 for the periods 1983–1987, 1989–1996
and 1997–2003, respectively.
For model application in the Weida catchment, the pe-

riods 1997–2003 and 2006–2009 were considered for
model calibration and validation of discharge and
nitrate-N concentrations. Measured daily discharge and
daily (1996–2003) and weekly to bi-weekly (2006–2009)
nitrate-N concentrations at the Laewitz gauging station
were used for modelling purposes.
As mentioned above, the agriculture land represents

about 66 % of the Weida catchment affecting the

instream water quality and in consequence the water qual-
ity of the Weida-Zeulenroda-Loessau reservoir (Fig. 1).
The historical discharge and nitrate-N concentration mea-
surements during the period 1983–2003, at the Laewitz
gauging station, show that the instream nitrogen concen-
trations have increased after the reunification of Germany
in 1990 compared to the previous periods (Fig. 2). How-
ever, no clear trend has been observed for discharge dur-
ing the entire period of 1983–2003 (black dashed line,
Fig. 2). Nevertheless, at least three different stages can be
easily distinguished for the instream nitrate-N concentra-
tions. Constant to slightly reduced nitrate-N concentra-
tions have been observed during the interval 1983–1987,
with an average concentration of 8.80 mg l−1 (blue dashed
line, Fig. 2). An increase in concentration, however, has
been measured for the period 1989–1996, with an average
concentration of 9.93 mg l−1 (red dashed line, Fig. 2). This
was mainly explained by the rapid increase of fertiliser ap-
plication to improve the crop yield. Subsequently, a con-
stant phase appears again with an average concentration
of about 8.91 mg l−1 during the period 1997–2003 (green
dashed line, Fig. 2). This can be explained by the
adopted catchment management strategy during this
period as detailed in Fig. 2. There are no accurate mea-
surements in terms of fertiliser rates during the period
1990–1997, but it has been reported that fertiliser ap-
plication had been increased, at least by 20 %, com-
pared to the period 1983–1989.
In order to reduce the impact of diffuse nutrient leach-

ing from the farmland in the reservoir, in 1997, the
Thuringian Reservoir Administration (TTV) developed a
catchment management strategy with the farmers. This
consisted of encouraging the farmers to limit fertiliser
application in their individual fields, which in turn
would reduce instream nitrogen concentration. This
procedure comprised of land use restrictions between
the farmers and the TTV, which was based on legal rules
and individual agreements. On the other hand, these
land use restrictions were compensated financially by
using field-specific measures [37]. Only a limited budget
was available for compensation payments, and the TTV
was therefore interested in optimising this agricultural
management strategy. Thus, the water authority (TTV)
intended to impose restrictions only where it was neces-
sary and oversee whether the farmers were really keep-
ing in line with their individual contracts. Therefore, the
TTV supervised land use restrictions in the Weida
catchment during the period 1997–2009 using the fol-
lowing actions:

◦ Recording the land use management of the individual
fields

◦ Inspecting the nitrogen application (amount and
timing) of each individual field

Table 1 Characteristics of the Weida catchment

Weida

Area (km2) 99.5

Elevation (m a.s.l) 357–552

Land use

Arable land (%) 40.0

Forest (%) 29.0

Pastures (%) 26.0

Urban (%) 5.0

Population density 80

Geology (–) Clay schist and eruptive rocks

Soil (–) Sandy loam and silt loam

Main temperature (°C) 7

Mean annual precipitation (mm year−1) 640

Mean discharge (m3 s−1) 0.72a

Mean specific discharge (l s−1 km2) 7.24

Mean NO3˗N concentration (mg l−1) 8.81b

aPeriod considered is 1975–2004
bPeriod considered is 1997–2003

Table 2 The crop share of agricultural land area (%) and their
annual nitrogen-fertiliser amount (kg N ha−1 year−1) used during
the baseline simulation

Crops Share (%) Organic N Mineral N Total N

Grassland 21 69.2 36.0 105.2

Winter wheat 25 46.3 130.5 176.8

Rape 19 58.4 145.8 204.2

Winter barley 13 48.6 125.0 173.6

Summer barley 12 35.4 62.1 97.5

Maize 10 78.2 112.6 190.8
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◦ High-resolution measurement of the nitrate-N
concentrations and flow rate at the main inflow of
the Zeulenroda reservoir (Laewitz gauging station)

Modelling approach
The continuous, semi-distributed and process-based
hydrological water quality HYPE model has been used
for this study. The HYPE model has been presented in
details elsewhere (e.g. [28, 30]), so here, only a summary
is given. The HYPE model has been developed based on
the previous HBV-NP model [38, 39]. First, the model
delineates the whole catchment into sub-basin systems
based on the digital elevation model and stream net-
work. Second, each sub-basin is divided into different
soil-land use combinations (SLCs) by the overlapping
soil and land use maps. Each SLC corresponds to a
unique hydrological response unit (HRU). Each SLC is
defined as a percentage of the sub-basin area and is not
coupled with the geographical location. Different vegeta-
tion types, such as forest and crop area, are simulated as
separate land uses. In the HYPE model, the soil can be
divided into a maximum of three layers, which can be
specified with different thicknesses (Fig. 3). The model
parameters are soil or land use-dependent, even as some
model parameters are assumed to be general parameters
for the whole catchment. Simulations start from a stand-
ard initial state and a warming up period of typically
1 year, which is excluded from the model evaluation.
The HYPE model simulates streamflow and nutrient
concentrations in the water, such as inorganic and or-
ganic nitrogen (IN and ON, respectively) and dissolved

and particulate phosphorus (SP and PP, respectively). In
addition, it can compute the total nitrogen (TN) and
total phosphorus (TP) as the sum of the relevant frac-
tions. The dissolved organic carbon (DOC) and other
nitrogen and phosphorus factions (e.g. humusN and
humusP) can be also simulated within the soil, but the
runoff leaving the soil contains only the nutrient frac-
tions mentioned above. Conservative tracers can also be
modelled. A more detailed description of the hydrologic
and nitrogen processes of the HYPE can be found else-
where [28, 30].

Model setup in the Weida catchment
The HYPE model (version 3.5.3) was set up for dis-
charge and nitrate-N simulations at the Weida gauging
station, at Laewitz, for the periods 1997–2003 and
2006–2009. The Weida catchment was divided into 37
sub-basins, and 16 SLCs were defined according to the
model setup. Within each sub-basin, the areas with simi-
lar land use and soil type were grouped together into a
single SLC and the different SLCs within a sub-basin
were not spatially distributed.
First, the HYPE model was calibrated for the period

1997–1999, and subsequently, it was validated for the
periods 2000–2003 and 2006–2009. One year (1996) of
warming up of the model was utilised, which was ex-
cluded from the model evaluation. After validation of
the model, the effects of different land use changes
and agricultural management practices on the in-
stream water quality were tested, using the appropri-
ate scenarios.

Fig. 2 The measured discharge and nitrate-N concentrations for the period 1983–2003. The discharge was measured at a daily time interval. The
NO3˗N concentrations were only measured at daily time steps during the period 1997–2003 (green circle points), while for the earlier periods 1983–
1987 and 1989–1996, they were measured at weekly and bi-weekly time steps, presented here with blue diamond and red triangle markers, respectively
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The HYPE model parameters are general or coupled
with soil type or land use. In addition, the model param-
eters are connected to the physiographical characteris-
tics of the catchment area and are not dependent on the
division into sub-basins [28]. This feature was con-
sidered in the development of the HYPE model to
improve its transferability and increase its applicability
in ungauged basins.
In order to minimise the equifinality problem during

the calibration phase, only the most sensitive model pa-
rameters have been optimised. The parameter identifica-
tion procedure follows three steps. First, a manual
sensitivity analysis is utilised for the identification of
model parameters using a one-factor-at-a-time approach
(OFAT) [31]. At this stage, the initial parameter values
are estimated based on their physical meanings, the
literature review of former model applications and the
gained knowledge from the Weida catchment. Finally,
the sensitive parameters obtained during the previous
stage are optimised using the Parameter ESTimation
(PEST) tool. In this step, reasonable initial guesses and
ranges are defined by referring to the parameter settings
in the applications of early versions of the HYPE model
applications [28–31] and results from iterative manual
calibrations. Detailed descriptions of parameter sensitiv-
ity analyses and their uncertainty have been described
elsewhere (e.g. [29, 31]).

Model evaluation
To evaluate the model performance, both statistical and
graphical techniques were used as recommended in the
literature (e.g. [40]). One of the quantitative statistical
parameters chosen for evaluation of the model was the
Nash-Sutcliffe [41] efficiency (NSE). The NSE reflected
the capability of the model to represent the dynamic be-
haviour of the measured parameter and quantified the
relative magnitude of the residual variance compared to

the measured data variance. For testing the reasonability
representation of the water and matter flux (loads) bal-
ance by the HYPE model, another statistical parameter
was used, which was the percentage bias (PBIAS). The
NSE and PBIAS were determined using the following
equations:

NSE ¼ 1−

Xn
i¼1

Y obs
i −Y sim

i

� �2

Xn
i¼1

Y obs
i −Y obs
�� �2

; ð1Þ

PBIAS ¼

Xn
i¼1

Y sim
i −Y obs

i

� �� 100

Xn
i¼1

Y obs
i

; ð2Þ

where Y sim
i and Y obs

i are the ith simulated and observed

discharge, respectively; Y sim
�

and Y obs
�

are the mean
values of the simulated and observed discharges, re-
spectively; and n is the total number of observations.
The NSE varies between infinity and 1, with NSE = 1

being the optimal value. The optimal value of PBIAS is 0
(e.g. the water balance is 100 % captured). Low PBIAS in
absolute values indicate accurate model simulation.
Positive values indicate model overestimation bias, and
negative values indicate model underestimation bias.

Baseline and scenario development
The baseline simulation has been conducted using the
collected data resulting from the agreement between the
TTV and farmers, as described in the “Discharge
simulations” section. Accordingly, the share of different
crops to agricultural area and their corresponding fertil-
iser application amounts, which are given in Table 2,
have been considered in the model baseline setup.

Fig. 3 An overview about the different runoff calculations of the HYPE model

Jomaa et al. Energy, Sustainability and Society  (2016) 6:11 Page 6 of 16



To investigate the effect of land use and crop changes
on nitrogen instream load in the period 2006–2009, dif-
ferent agricultural practice scenarios were designed.
Some of these scenarios were developed considering the
increase in bioenergy crops in the region, based on suit-
ability and practicality. The definition of these scenarios
was carried out in close collaboration with stakeholders
and agricultural agencies to ensure a high degree of ac-
ceptance by the farmers. The projected scenarios also
covered a wide range of realistic and site-specific agri-
cultural management practices that could increase or re-
duce the nitrogen loads, as detailed a little further in the
text. For consistent comparison between the different
scenarios, each scenario was compared to the baseline
simulations, which were the model predictions of the
real situation during the considered period.
For the baseline simulation, the agricultural manage-

ment practices that occurred in the period 2006–2009
were simulated by the HYPE model, using the administra-
tive information derived from a survey conducted by the
drinking water reservoir authority. For instance, the min-
eral and organic fertiliser amounts and their correspond-
ing application timings were adjusted as inputs in the
model based on the measured values obtained from the
farmers as per the agreement with the TTV authority, as
explained above. The predicted nitrate-N loads obtained
from the baseline simulations were compared to six sce-
narios. In the first scenario (denoted as S1), the fertiliser
application for all crops was increased by 20 %. This sce-
nario was designed to evaluate the nitrogen loads without
the agricultural catchment management strategy, which
was developed in 1997 by the TTV to reduce the instream
nitrogen concentration that was observed during 1989–
1996, after the reunification of Germany. In other words,
the S1 scenario was suggested to observe as to what extent
the fertiliser restriction initiative could affect the nitrogen
loads. Another scenario was developed based on the as-
sumption that only organic farming is applied (no mineral
fertiliser). This scenario, denoted as S2, was developed to
answer the question—to what extent could the Zeulenroda
drinking water reservoir be protected when only organic
farming was applied to the entire agricultural lands? The
third scenario (S3) was developed based on the assump-
tion that all agricultural areas were converted to maize,
which was well known as one of the biogas feedstock
for bioenergy production. Also, the conversion of all
crops to summer barley was considered as scenario 4
(S4). In scenario 5 (S5), the crop areas that were origin-
ally occupied by rape and maize were converted to win-
ter wheat. Here, it is worth mentioning that barley and
winter wheat were known as two crops for bioethanol
production. In the last scenario, the winter wheat and
maize crop areas were converted to rape (S6), which
was known as a biodiesel crop.

The comparison between each scenario and baseline
predictions was conducted in terms of nitrate-N loads in
monthly time steps. First, the daily nitrate-N load was cal-
culated by multiplying the measured/simulated NO3-N
concentration with its corresponding accumulated daily
discharge. Next, the measured monthly load (L) was
estimated using the following interpolation method
(equation 3), with continuous discharge measurements
and regular sampling of nitrate-N concentrations [42]:

L ¼
K
Xn
i¼1

CiQið Þ
Xn
i¼1

Qi

� Qr
�
; ð3Þ

where K is a conversion factor accounting for the period
of load estimation and measurement units, Ci is sample
concentration, Qi is the flow at sample time and �Qr is
the mean flow for the period of interest (derived from a
continuous flow record).

Results and discussion
Discharge simulations
A multi-objective calibration approach was utilised to
setup the HYPE model at the Weida catchment. The
model was calibrated for the period January 11, 1997–
October 31, 2000, and was then validated for the period
January 11, 2000–October 31, 2003, at the Laewitz basin
gauging station. The HYPE model could reproduce the
measured daily discharge reasonably well (NSE were
about 0.78 and 0.82 for the calibration and validation pe-
riods, respectively) (Fig. 4). The dynamic behaviour of
the measured discharge was captured well by the model.
Some extreme rainfall events, however, were slightly
under- or overestimated, affecting the model perform-
ance. The HYPE model predicted the streamflow at daily
intervals using the daily precipitation, limiting an accur-
ate prediction of extreme events, which were usually
generated by high rainfall intensity at shorter time inter-
vals (hourly) [31]. The water balance was also repro-
duced well during the calibration and validation periods
(PBIAS < 10 %). Overall, the model slightly over-predicted
the water balance during the calibration (PBIAS = 3.74 %)
and validation periods (PBIAS = 7.28 %). This overesti-
mation could lead to unbalanced nitrate-N calculations.
The most sensitive discharge-related parameters, their
physical meanings and optimised values are listed in
Table 3. The highest controlling parameter for discharge
simulations was the potential evapotranspiration rate of
the arable land (cevp), which was the dominant land use
share (40 %) in the whole catchment area (Table 1). The
additional sensitive discharge-related parameters con-
tained the uppermost soil layer runoff coefficient of the
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dominant sandy loam soil (rrcs1), the maximum velocity
in the stream channel (rivvel), the runoff coefficient for re-
gional groundwater flow (rcgrw) and the decrease of
evapotranspiration with the soil depth (epotdist). Similar
controlling discharge simulation parameters were found
in a previous study conducted in the meso-scale Selke
catchment (463 km2), located in Sachsen-Anhalt state

(Germany), using the same HYPE model [31]. How-
ever, the best optimised values differed between both
catchments. This discrepancy in terms of best opti-
mised parameters could be explained by the differ-
ence in the climate forcing data, topographical and
physiographical characteristics between the two catch-
ment areas.

Fig. 4 Measured and predicted discharge at the Laewitz gauging station for the calibration (1997–2000) and validation (2000–2003) periods. The
HYPE model could reproduce significantly well the dynamical behaviour of the measured discharge (lowest NSE = 0.78). Also, the water balance
was well captured by the model during the whole simulation periods (with highest PBIAS of about 7.28 %)

Table 3 The most sensitive hydrological parameters, their physical meanings and their optimised values of the HYPE model for
discharge and nitrate-N simulations

Parameter Physical meaning Sensitivity 
rank Initial range Optimized 

value
cevp
Arable land Potential evapotranspiration rate (mmd °C 1 0.01 1.50 0.1038
rrcs1
Sand loamy Soil runoff coefficient for the uppermost soil layer (d 2 0.001 1 0.0400
rivvel Maximum velocity in the stream channel (ms 3 0.001 1 0.0560
rcgrw Runoff coefficient for regional groundwater flow (d 4 0.0001 0.1 0.0400
epotdist Decrease of evapotranspiration with soil depth (m 5 1 10 5.4169
denitr Denitrification rate in soil (d ) 1 0.001 0.1 0.0727
uptsoil1
Arable land
Forest 
Grassland

Fraction of nutrient uptake in the uppermost soil layer ( ) 2
0.001 1.0
0.001 1.0
0.001 1.0

0.8000
0.8000
0.5000

fertdays Number of days that fertiliser applications occur counting from the first 
application and forward using the same amount every day ( ) 3 10 150 60

denitw Parameter for the denitrification in water (kgm2d 4 1×10 6 0.1 1×10

wprod Production/decay of N in water (kgm 3 d 1) 5 0.0001 0.1 0.0670– –

1)–

1)–

1)–1–

1–

1)–

1)–

1)–

– 6–

−
−

−
−
−

−

−
−
−

−

−

−

−

−

Rows shaded in grey correspond to parameters related to hydrological processes, while the rest are related to nitrogen processes
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Nitrate-N simulations
The HYPE model could reproduce the measured nitrate-N
concentrations for the calibration and validation periods in
a good manner (Fig. 5). The model could represent the
dynamic behaviour as well as the order of magnitude of
the measured nitrate-N concentrations. Also, the seasonal
stream nitrogen concentration pattern, which was re-
flected by an increase in winter followed by a decrease in
summer, was reproduced well by the model. The most
sensitive nitrate-N-related parameters were the denitrifica-
tion rate in soil (denitr) and the fraction of nutrient uptake
in the uppermost soil layer (uptsoil1) of the three domin-
ant land use classes (i.e. arable land, forest and pastures). It
is known that for the biogeochemical processes, denitrifi-
cation and plant uptake are low in winter and high in sum-
mer following the seasonal temperature patterns. The
lower nitrate-N concentrations during low-flow conditions
(in summer) are because of the lower nitrogen transport
capacity and high retention (e.g. denitrification), and
higher plant uptake because of the high temperature [31].
These findings reflect the capability of the HYPE model to
represent the internal nitrogen processes and their dy-
namic variations controlled by the climate and flow condi-
tions. The rest of the sensitive parameters related to
nitrogen processes are listed in Table 3.

Nitrogen load simulations
As discussed above, the HYPE model showed good cap-
ability to reproduce the measured discharge and nitrate-

N concentrations during the calibration and validation
periods (Figs. 4 and 5), resulting in good estimations of
daily NO3-N loads (Fig. 6). The measured daily NO3-N
loads were reproduced well by the model during both
calibration and validation periods (NSE = 0.64 and 0.67
for calibration and validations periods, respectively). The
nitrate-N daily loads were slightly underestimated for
the calibration phase (1997–2000), which was reflected
by a PBIAS = −4.67 %. This under-prediction mainly oc-
curred during the winter of year 1999, where some daily
nitrate-N load peaks were under-predicted, which was
probably because of the underestimation of peak flow
during the same period (Fig. 4). During the validation
period, however, the daily nitrate-N loads were overesti-
mated (PBIAS = 8.12 %). This was mainly because of the
overestimation of the low-flow conditions (e.g. recession
curves of some events during the winter of 2003). The
inconsistencies between simulated daily NO3-N loads
and their corresponding measured values were mainly
attributed to the mismatches between the observed and
predicted discharges, reflecting the importance of good
hydrological simulation for representation of nitrate-N
loads [31].
The results showed that by using a multi-objective

calibration approach, 95 % of the posterior uncertainty
intervals of the most sensitive hydrological parameters
decreased compared to stepwise calibration (results not
presented here), reflecting the usefulness of multi-
objective calibration to improve hydrological parameter

Fig. 5 Measured and predicted nitrate-N (NO3-N) concentrations for the Weida catchment. Two periods of three years 1997–2000 and 2000–2003
were used for the calibration and validation modes, respectively
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identification. Additionally, a predictive analysis was
implemented for discharge and nitrate-N concentration
simulations using PEST [43] to investigate the effect of
parameter non-uniqueness. Parameter uncertainty ana-
lysis did not result in large predictive uncertainty,
especially for discharge simulation (unpublished data)
compared to nitrate-N concentration. However, it has to
be noted that PEST is a local search algorithm. Thus,
the results of parameter calibration (i.e. the stability of
the final optimised values) and predictive uncertainty
analysis depend greatly on parameter initial values and
ranges defined at the beginning of the analysis. In the
ongoing work, a global approach (i.e. Monte Carlo
Markov chain) will be utilised for parameter and predic-
tion uncertainty analyses [44].

Model transferability to the period 2006–2009
The HYPE model was successfully transferred and vali-
dated temporally during the period 2006–2009 in terms
of discharge and nitrate-N predictions using the same
optimised parameters obtained for the period 1997–
2000. The share of crops and associated fertiliser appli-
cation rates were taken from the collected field survey
data by the TTV authority. Monitored agriculture prac-
tice data for all fields were used as inputs to minimise
the total uncertainty of the model application. Discharge
simulation performance was slightly reduced in the
period 2006–2009 compared to the previous period
(1997–2003), where the NSE and PBIAS (for the period

2006–2009) were about 0.63 and 5.79 %, respectively
(Fig. 7). The lower model performance could be ex-
plained by the underestimation of the three high-flow
events that occurred in September 2007, April 2008 and
March 2009. The model, however, reproduced the dynam-
ical behaviour of the measured nitrate-N concentrations
well during the period 2006–2009. The discrepancies be-
tween the measured and predicted discharges during the
three extreme events resulted in the under-prediction of
daily NO3-N load during these extreme events (Fig. 8a).
The predicted nitrate-N load of September 29, 2007, was
about 3.917 kg d−1, much lower than the measured value,
which was about 14.854 kg d−1. Overall, the HYPE model
could represent the measured monthly nitrate-N loads
(Fig. 8b) reasonably well, except for the three extreme
events (September 2007, April 2008 and March 2009), as
explained above. This monthly simulation was taken as a
baseline for the comparison of the effects of land use and
agriculture practice changes on stream nitrogen loads.

Effect of land use changes and agriculture management
on instream water quality
It is common in agriculture to increase fertiliser applica-
tion to improve crop yield. Thus, the first designed
scenario (S1) was to test the effect of increasing the fer-
tiliser application by 20 % for all crops on the stream
nitrogen load. To this end, the fertiliser rates of all exist-
ing crops had increased by 20 % during the simulation
period. Results revealed that the 20 % increase of

Fig. 6 Measured and predicted daily nitrate-N (NO3-N) load for the calibration (1997–2000) and validation (2000–2003) periods
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fertiliser amounts augmented the monthly nitrate-N
loads in the range of 2–6 % for the 3-year simulation
period (Fig. 9a), except after the harvesting period,
where the increase could achieve a range of 7–39 %.
Nitrate-N concentrations were probably affected by the

amount of mineral NO3-N left in the soil after har-
vesting and continuing nitrogen mineralisation in late
autumn and beginning of winter [45]. The chemical fer-
tiliser and manure were divided and added to the two
topsoil layers in the proportion set by the user, allowing

Fig. 7 Temporal validation of the HYPE model for discharge and nitrate-N concentrations in the period 2006–2009. The model could represent
significantly well the hydrologic dynamical behaviour, except during some extreme events, which were underestimated resulting in reduction of
NSE compared to the previous period 1997–2003. Also, the HYPE model could reproduce well the measured nitrate-N concentrations during the
period 2006–2009

Fig. 8 Measured and predicted daily and monthly nitrate-N loads in the period 2006–2009. The HYPE model load predictions are in good agreement
with the observed data at daily and monthly time steps
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for simulation of different agriculture practices (such as
tillage) [28].
The second scenario was designed considering only

organic farming (S2). This scenario prompted the appli-
cation of an average annual organic fertiliser in the range
of 35.4–78.2 kg N ha−1 year−1 depending on the crop
type (organic fertiliser rates were 69.2, 46.3, 48.6, 35.4,
78.2 and 58.4 for grassland, winter wheat, winter barley,
summer barley, maize and rape, respectively). Results
showed that the stream nitrate-N load reduced signifi-
cantly during the entire simulation period, when only or-
ganic farming (no chemical fertiliser) was applied
(Fig. 9b). This reduction varied from 3 to 41 %, and the
maximum decrease was observed during winter and
spring compared to the baseline predictions (where min-
eral and organic fertilisers were considered). It has to be
noted that the efficiency of organic fertiliser is likely to
be reduced by denitrification and volatile losses after its
application. This process is highly influenced by plant
uptake and weather conditions (temperature and rainfall
patterns) and by the nitrogen turnover in the soil [45].
Thus, comparison between organic and mineral fertili-
sers should consider these gaseous losses.
The scenario S3 assumes that all crops are converted

to maize (Fig. 10a). This induced a constant annual fer-
tiliser application of 190.8 kg N ha−1 year−1 (divided into
112.6 and 78.2 kg N ha−1 for mineral and organic fertili-
sers, respectively) for all crops. The results showed that

the nitrate-N load increased when all agricultural land
(that were originally used by different crops) were con-
verted to maize (Fig. 10a). The increase ranged between
1 and 5 %, except immediately after the application
period (the first application was after ploughing and the
second was 3 months after the sowing). After these two
applications, the nitrogen load increased rapidly and
achieved a range of 6–28 % compared to the baseline
simulations. It was seen, experimentally, that the time of
harvest affected the decomposition of maize residues
[10]. Soil mineralisation can additionally be affected by
soil moisture content, temperature and soil aeration.
This may have a strong effect on nitrogen release after
the harvest, when growing maize [10]. It was experimen-
tally shown that nitrate-N leaching from grassland was
five times less than from silage maize [45]. This suggests
that further conversion of grassland, with high soil or-
ganic matter content, to maize could increase nitrogen
losses from land to water even on a regional scale [45].
When all crops were converted to summer barley (S4)

and annual fertiliser application of 97.5 kg N ha−1 year−1

(62.1 and 35.4 kg N ha−1 year−1, for mineral and organic
fertilisers, respectively) was considered, the monthly
nitrate-N loads were reduced significantly compared to
the baseline simulations (Fig. 10b). The nitrate-N loads
were reduced in the range of 22–64 % compared to the
baseline simulations for the whole period. This high
nitrogen load reduction could be explained by the high

Fig. 9 Monthly nitrate-N loads for the baseline and two agriculture management scenarios for the period 2006–2009. The results showed that
the nitrate-N load enriches when the fertiliser application is increased by 20 % for all crops (a). While, when only organic farming is used, the
NO3-N load reduces significantly compared to the baseline predictions
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nitrogen retention (e.g. denitrification processes) during
the summer because of the high temperature. It has also
been noted that the decrease of nitrogen load on the ac-
count of scenario S4 (where all crops were converted to
summer barley) was slightly reduced during the period
August–October. This period corresponded to the after-
harvesting phase of the summer barley and the early
rainy autumn season, explaining an additional increase
of leached nitrogen.
The results showed that converting bioenergy crops

(i.e. rape and maize) to winter wheat (S5) reduced the
average monthly nitrate-N loads of between 27 and 53 %
compared to baseline predictions (Fig. 11a). The nitro-
gen load, however, was increased only during the harvest
period (June–August) within the range of 39–56 %. It is
worth mentioning here that in Germany, the production
of bioethanol is mostly carried out based on cereals (i.e.
wheat, rye, barley and triticale). For instance, in 2011,
about 80 % of the bioethanol production in Germany
had been produced from grains and about 20 % from
sugar beet [46].
When only the cropping areas of winter wheat and maize

were converted to rape (S6), nitrate-N load was reduced
(in the range of 6–19 %) during winter (November–March)
and increased during spring and summer (17–60 %). The
latter period corresponded to the second application of
mineral fertilisers, which occurred 115 days after the

sowing of rape. It is known that rape requires a high rate
of fertilisers (around 200 kg N ha−1 year−1).
It has been reported in the literature that agricultural

practices following field harvesting, such as ploughing
time and ploughing type (i.e. how deep), may affect
nitrogen losses from soil. The type and timing of the
organic fertilisers can further affect nitrogen leaching
considerably. For instance, it has been reported that
deep ploughing of organic soils can lead to higher nitro-
gen leaching than deep ploughing of sandy soils and
soils poor in organic matter [47]. Based on a previous
study [31], the Weida catchment is characterised by a
high denitrification coefficient (0.0727 > 0.0228) com-
pared to the Selke catchment located in Sachsen-Anhalt.
This suggests that probably denitrification has prevented
most of the nitrate-N from reaching the deeper ground-
water. Also, the geology of the Weida catchment is char-
acterised by clay schist and eruptive rocks, which leads
to low groundwater flows.

Conclusions
A hydrological water quality (HYPE) model was setup to
predict discharge and nitrate-N concentrations using an
intensive agricultural catchment in central Germany on
a daily time step. The model could reproduce the ob-
served discharge and nitrate-N concentrations reason-
ably well, resulting in good simulations of the stream

Fig. 10 Comparison between baseline monthly nitrate-N load and two agriculture scenarios. The results showed that the nitrate-N load was
increased when all crops are converted to maize (a), while the nitrate-N load was reduced when all crops are converted to summer barley (b)
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nitrogen load. The effect of different land use and agri-
cultural practice changes on the stream nitrogen load
was investigated using a modelling scenario approach.
The results revealed that the nitrogen loads could
increase or reduce rapidly depending on the designed
scenario. This rapid response could be explained by the
short residence times of interflow and baseflow runoff
components because of the hardrock geological proper-
ties of the catchment. The nitrogen loads increased in
the three scenarios where (i) mineral fertiliser was aug-
mented by 20 %, (ii) all crops were converted to maize
and (iii) winter wheat and maize were converted to rape.
This induced either an increase of fertiliser application
or increased cultivation of bioenergy crops, such as
maize and rape, which were likely to increase stream
nitrogen loads. On the other hand, the nitrogen load
was reduced in scenarios where (i) only organic farming
was practiced, (ii) only summer barley and rape were
cropped and (iii) maize cropping areas were converted
to winter wheat.
Also, these numerical investigations confirmed previ-

ous experimental findings reported in the literature that
management options such as fertiliser amounts and its
time of application could increase or reduce nitrogen
load very rapidly on soils with a high mineralisation po-
tential (e.g. coarse-textured soils). Additional manage-
ment options such as the choice of dominant crops

and its harvesting times could modify nitrogen load
considerably.
There is a need for further detailed investigations of

additional influencing factors (such as different crop ro-
tation and different soil properties) on nitrogen leaching.
Also, model uncertainties have to be considered for
evaluating scenario effects. This is of significant import-
ance of ongoing work.
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