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Abstract 

Background:  Economic benefit has been analyzed for the yield of farming products when designing a farming sys-
tem, while waste treatment also generates profitable energy products for this system. The economic factor is decisive 
in decision-making for applying waste treatment solutions for a small-scale farming system. A household farming 
system in the Mekong Delta generates many kinds of organic wastes, but most of the agricultural waste resources are 
disposed of into the environment.

Methods:  This study approaches an analysis of economic–environmental–energy (EEE) efficiency for waste treat-
ment of an integrated livestock-orchard (LO) system on a household scale in the Mekong Delta. This novel analysis 
method is based on the energy content of biomass and its cost. The EEE efficiency is optimized to gain objective 
functions regarding energy yield efficiency, system profit, and CO2 sequestration for the treatment model. The algo-
rithms are built for optimizing these objective functions.

Results:  The optimization results show the treatment model of pyrolysis and pelleting gain all the objective func-
tions with high efficiency. The model is efficiently applied for the LO system that generates more than 100 kg of 
orchard residues and 3000 kg of pig manure. The system with a charcoal oven and pellet machine is capable to gain 
energy efficiency due to its potential biofuel products, such as biochars and pellet products. A treatment model of 
composting, pyrolysis, and pelleting gives the best performance of overall EEE efficiency.

Conclusions:  This work has proven economic benefits from integrating biogas tank, charcoal oven, and pellet 
machine in an integrated LO system. The system contributes not only for reducing CO2 emissions but also for sup-
plementing secondary renewable bioenergy, as well as for increasing incomes and thus supporting livelihoods for the 
local farming households.
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Introduction
The agricultural sector generates various kinds of bio-
logical wastes that have great potential for recycling into 
useful secondary products as fertilizers or biofuels [1, 2]. 
Biofuel products from waste have been recognized as an 
environmentally friendly alternative to coal and fossil 
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fuels [3]. Compared with the characteristics of raw bio-
waste, biofuel has high bulk density, low moisture con-
tent, and high energy content [4]. In addition, they are 
CO2-neutral and commercially valuable fuels, easy to 
transport and store [5, 6]. The potential of energy bio-
mass has encouraged research on converting biomass to 
biofuel products, also attracted by their market values 
[7]. Jing et al. [8] remarked that economic benefits are the 
main factor to invest technologies for biofuels.

Analyzing economic benefits is applied for agricul-
tural systems in rural [9–13] and in urban [8, 14, 15]. Not 
only raw biomass (plant residues) but also intermediate 
products after treatment (compost and anaerobic diges-
tate) have the potential for energy production [16, 17]. 
The study of Vadenbo et al. [18] demonstrates the envi-
ronmental benefits of fecal energy, while also highlights 
the constraints of technology and economy on the energy 
potentials of biomass.

Ordinarily, treatment solutions of organic waste are 
represented by composting and anaerobic digesting that 
produce products with low energy content. Pyrolysis and 
pelleting are popular thermochemical processes for gen-
erating biofuels [19–21]. Pyrolysis decomposes organic 
materials under non-oxidizing conditions and creates 
fuels with much energy content [5, 20, 22, 23]. Gas, bio-
oil, and biochar are energy products of pyrolysis that 
can be used to produce energy [19]. In addition, pellet-
ing is another technique of thermochemical conversion. 
Raw materials for biochar and pellet products are diverse 
such as rice husks, wood chips, straws, etc. [5, 24, 25], 
and from secondary products after treatment such as 
biogas sludge [26] and compost [27]. They are similar 
to waste sources arising from the livestock-orchard sys-
tem, so our research prioritizes applying the above two 
treatment solutions to this system. Besides, the market 
price of biochar and biomass pellets is many times higher 
than that of compost [7, 28]. Among biofuels, biomass 
pellets present many advantages in the great market by 
the abundant materials with relatively simple process-
ing techniques [5]. Despite the uncertainty of demand 
and market prices for our case study area and parts of 
the world, these biofuels would be the primary sources 
of renewable energy in the context of local perspectives, 
where people have only seen the role of compost.

An agricultural system with many production compo-
nents, also known as an integrated farming system [29] 
such as a livestock-crop system, generates diverse kinds 
of waste that need multiple treatment solutions [30]. Hai 
et al. [31, 32] proposed many treatment solutions for bio-
mass from this system, yet overlooks the economic prof-
itability of waste-based energy products. To the best of 
our knowledge, there is a lack of studies on the energy 
and economic efficiency of treating organic waste to 

create energy products for an integrated agricultural sys-
tem in rural Vietnam. The economic factor is one of the 
most significant bases to estimate the performance effi-
ciency of a waste treatment system. A small-scale farm-
ing household system necessarily takes it into account, 
especially with the system in the poor countryside areas 
such as the acidic-soil areas in the Mekong Delta [30]. 
The lack of research literature calls for further research 
on the profitability of waste treatment solutions to pro-
duce energy in a farming system.

This study aims to build a new approach to the optimal 
model for waste treatment in terms of EEE efficiency to 
fulfill the shortcomings of earlier studies. From the point 
of view of economic benefits, profit determines invest-
ment opportunities for a system. It leads this work to 
focus on waste treatment solutions to create waste-to-
energy products for an orchard-livestock (LO) system at 
a household scale. In this system, organic wastes derived 
from the orchard and pigsty are used for pyrolysis and 
pelleting to produce biofuels. Then, input–output data 
of material and energy flows engaged in each treatment 
solution are analyzed; thereby, the efficiency of treatment 
solutions related to energy, profit, and environment is 
evaluated via multi-objective algorithms.

This study considers some experiments in the field of 
waste treatment facilities to simulate scenarios for treat-
ment systems, and then applies economic analysis and 
analysis of material and energy flows that enter these 
systems. Analysis methods are developed from the work 
of Chen et al. and Munster et al. [33, 34] to optimize the 
efficiency of treatment systems. Chen et al. [33] applied 
energy and economic analysis on integrated treatment 
technologies for municipal solid waste and sludge. Mun-
ster et al. [34] employed a combined method of new cost 
optimization and a life cycle assessment to optimize 
costs or greenhouse gas emissions for the domestic waste 
treatment model.

Since the characteristics of a specific system affect the 
objectives of optimization assumptions [34], they are 
different in the treatment models of energy products. 
Algorithms use the model’s parameters to apply for the 
objective functions of performance efficiency in the LO 
system. Generally, our study will design waste treatment 
solutions for LO systems to optimize their performance 
efficiency regarding energy yield, profit, and CO2 reduc-
tion. Economic analysis is developed from the formulas 
of Chen et al. [33], which comparing the market price of 
energy products and their estimated price. The estimated 
price is calculated by dividing the investment and operat-
ing cost by the number of products from the treatment 
equipment. Energy efficiency is evaluated by the formula 
of Munster et  al. [34] regarding the energy content of 
inputs and outputs. Finally, mathematical optimization 
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of EEE efficiency is developed for the treatment model of 
the LO system.

Materials and methods
Case study description
The typical demographic structure of a farming house-
hold within an acidic soil area of the Mekong Delta is, 
on average, from 3 to 4 members or more from 2 gen-
erations, or from 5 people or more from 3 generations 
living together in one household, and there are always 
at least 2 working laborers in each family. Within a typi-
cal farming household there are main components such 
as homestead and fruit trees orchard, pond, and paddy 
field/crop field, where the homestead normally includes 
also the livestock shed. The productive components of 
a rural farming household in this acidic soil areas are 
combined types of four components: House–Orchard-
Livestock–Pond. Ponds are mainly in the forms of ditches 
and irrigation canals that cannot be used for aquaculture 
purpose, because the water is contaminated with acidic 
components (pH level is lower than 5.0). Livestock are 
commonly raised in a form of sheds in a local household. 
The land use for a farming household is commonly above 
500 m2, in which orchard land can only grow some kinds 
of fruit trees such as mango, banana, etc. which are suit-
able for the acidic soil area under study in Mekong delta 
[35]. In brief, in the agricultural system of a household 
there are specific livelihood activities such as orchard 
cultivation, and livestock (mainly pigs and cows), and 
the proposed solutions of treating waste for this system 
would be highly feasible and applicable.

Converting biomass into energy products has not 
been fully exploited yet for farming households in rural 
areas, especially in the acidic soils of the Mekong Delta. 
Because of limited knowledge and skills by rural farmers, 
biofuels from agricultural waste are often not high inter-
est. Composting and anaerobic digestion are traditional 
solutions for treating agricultural wastes in these areas. 
Biogas and compost, the secondary/immediate prod-
ucts after the treatment, are often returned to the system 
and have limited use in the household. In addition, they 
have low commercial value. Furthermore, biogas sludge 
is a potentially valuable renewable resource that is often 
overlooked. In other words, the various types of wastes 
derived from the integrated system often cause pressure 
on treatment solution while they could have potential to 
be converted into secondary energy products. Livelihood 
activities of a household in the acid-contaminated soils 
are constrained to cultivation, animal husbandry, etc. 
Household income is usually very low, about 100 USD 
per person a month on average, so it is hard to have any 
investment in farming activities on a larger scale.

The study was carried out on a typical farming house-
hold in acidic soil area in Tien Giang province of the 
Mekong Delta (latitude of 10°34′45′′ N, and longitude of 
106°12′12′′ E). The total area of farming land within the 
household is 2000 m2 which is used for two activities: 
raising 10 pigs in a shed and cultivating of a mixed fruit 
trees in an 1000 m2 orchard. For the household liveli-
hood, breeding of pigs brings the basic income while 
cultivation in the orchard also gives additional income. 
The biogas-tank is the only treatment facility here, which 
is used for treating 20  kg pig manure (including urine) 
every day. Most of the prunings of fruit trees (twigs, 
leaves, etc.) are left to be dried naturally, and then used as 
firewood for cooking.

Methodology for EEE efficiency optimization for waste 
treatment system
Our research proceeds to identify suitable treatment 
technologies for a system that generates multiple kinds 
of organic waste. By applying appropriate treatment 
solutions, such a typical LO system with diverse types of 
organic wastes can supply energy containing products, 
and due to the market value of these products, this will 
bring additional income for the local household as well. 
Composting and anaerobic digestion are the “best avail-
able” solutions to exploit all potentials for generating bio-
energy products. Compost is widely appreciated for its 
value as organic fertilizer, whereas biofuel products such 
as biochar or biomass pellet are both biofuels and ferti-
lizers, which can bring additional economic benefits for 
the farming purposes. Based on such a perspective, a set 
of potential solutions for treating different types of avail-
able wastes needs to be employed for this farming sys-
tem. In addition to the traditional solutions, pyrolysis and 
pelleting will be added to this LO system, and they are 
applied to treat all kinds of biowastes in the system with 
purpose to produce secondary products with high energy 
contents, such as biochars and biomass pellets. However, 
the limitations of the living conditions of the local house-
holds somewhat affect the application of expensive waste 
treatment facilities.

It is hard to find the appropriate parameters and the 
inputs for the model/system of treatment solutions to 
apply them to the farming system to regional extents; 
therefore, the treatment solutions must fix the refer-
ence system first [36]. After simulated treatment per-
formances, the system should be modified to support 
better agricultural practices on the regional scale. The 
specific parameters for the model/system should meet 
the demands of local people, for example, the unit cost 
of the treatment equipment and the quality of the waste 
resource entering the system. These values need to be 
optimized under the circumstances of the study area to 
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find out a general model (formulas) for the best treat-
ment practice.

The performance efficiency of treatment model/system 
is analyzed based on methods of material and energy flows 
analysis. Input and output flows participating in the treat-
ment models contributes energy and economic benefits to 
economic and energy efficiency [37]. The ratio of output 
product and input feedstock for each treatment facility pre-
sents the energy efficiency of the treatment [38]. Economic 
and energy efficiencies of treatment are calculated to bal-
ance inflows and outflows, then to solve the energy loss in 
the system. Besides, the calculation of model efficiency 
considers all contained energy in the input and output for 
reducing energy loss and replenishing energy for the system.

The recent studies [34, 39] have applied different ana-
lytical methods on economic and energy efficiency for 
waste treatment. Munster et al. [34] uses energy system 
analysis for energy efficiency and the OptiWaste tool for 
economic and environmental efficiency. The efficiencies 
are related to waste treatment, energy production versus 
income from recycled material or energy (i.e. heat, elec-
tricity, or biofuel). Chen et  al. [33] analyzes energy sys-
tems on cost, fuel efficiency, CO2 emissions, and other 
parameters such as initial investment, operating cost, 
and turnover. Based on methods of EEE efficiency analy-
sis from the mentioned studies, the target parameters for 
our proposed treatment model are related to the data of 
inputs (orchard prunings and pig manure) and outputs 
such as energy yield, profit from energy products, and 
environmental issues in terms of CO2 emissions.

The efficiency of the treatment model is affected by 
data of the input and the output, including the energy 
content (namely, high heating value—HHV), the poten-
tial CO2 emissions, and the profit. Three objective 
functions of the model are developed for optimizing 
the EEE efficiency of the model. They are represented 
by the ratio of output energy to input energy (OTI), the 
ratio of CO2 sequestration to CO2 emission (STE), ratio 
of market price to predicted price of output unit (MTP) 
in Table  1. Specific algorithms are applied to quantify 
the objective functions. They are based on two per-
spectives, including (1) the household concern about 
economic profit from the model, (2) considering the 
treatment system as a production function of Cobb–
Douglas [40], which is described by a set of variables for 
technology, capital stock, labor force, energy consump-
tion, and noise error term. Energy efficiency is based on 
the energy content of input and output using formula 
of Munster et  al. [34]. Based on the formulas of Chen 
et al. for calculating common economic values [27], the 
algorithm in our study develops them to compute the 
profit of after-treatment products by dividing the prod-
ucts’ market price by their estimated price.  The esti-
mated price relates to the expenditures of the treatment 
facility, operating cost, and the number of the expected 
output products. The amount of carbon in the second-
ary products corresponds to the carbon sequestration 
and is estimated by CO2 equivalent from biomass com-
bustion [36–38]. Equation (1) is used for calculating the 
amount of CO2 gas based on energy in it as follows:

(1)Carbon dioxide emission

(

kg

MJ.year

)

=

Biochar or pellet yield
(

kg
year

)

× Carbon in biochar or pellet
(

%, ww
)

×
44
12

HHV of biochar or pellet (MJ)
.

Table 1  Parameters and simulation algorithm of the objective function for treatment model

a Unit (U) of both input and output biomass for OTI and STE is presented as the mass (kg) of i.e. garden waste, pig manure, compost, biogas sludge, and the volume 
(m3) of biogas, and kWh of electricity. Their energy content is expressed by HHV (J/U); in this study, the HHV of biomass is measured, or documented by the previous 
literature

Parameter Equation for objective 
function

Interpretation

OTI OTI = OE/IE OTI: Ratio of output energy to input energy or energy efficiency
OE: Output energy (MJ); amount of output product (kg, m3) times HHV of product (MJ/kg)
IE: input energy (MJ)a

STE STE = STO/ETO STE: ratio of CO2 sequestration to CO2 emission
STO: ratio of the weight of sequestrated CO2 gas to the output energy (kg CO2/MJ)
ETO: ratio of the weight of exhausted CO2 gas to the output energy (kg CO2/MJ)

MTP MTP = MP/PP MTP: ratio of market price to predicted price of output unit of output unit
MP: market price ($/product unit)
PP: predicted price ($/product unit)
PP = total cost for a period ($) divides number of finished output products (product units)
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A diagram of the EEE efficiency optimization frame-
work for waste treatment solutions of a LO system is 
shown in Fig.  1. The multi-objective algorithm is used 
for the crucial parameters of the EEE efficiency and the 
initial input [36].

Pre‑design of waste treatment techniques for experimental 
optimization
In this study, the input feedstock for the treatment 
facilities are pig manure and prunings of mango trees 
and banana trees (common trees growing in the acidic 

Fig. 1  Diagram of EEE efficiency simulation framework of the treatment solutions and related optimization algorithms
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soils in Mekong delta), and of some unpopular local 
fruit trees such as longan and jackfruit. The specifica-
tions of treatment need to be calibrated for the objec-
tive functions as mentioned above. The charcoal oven 
and the pellet machine are treatment facilities supple-
mental to the biogas digester (available in the current 
LO system), so our experiments are conducted at these 
facilities to Fig. out the ideal factors for objective func-
tions. Slow pyrolysis at low temperatures below 400 ºC 
[3, 4, 20, 22, 41, 42] is applied for this study to maxi-
mize the number of biochars (intermediate product) 
rather than bio-oil [19, 43]. Our study conducts experi-
ments of pyrolysis by a charcoal oven on the field while 
this process has been mainly found in the laboratory 
and demo [19]. The charcoal oven is made of materi-
als, such as recycled metal, or brick, or stainless steel 
(Fig.  2). This oven can use dried wood, dried orchard 
prunnings, and biogas as fuel for combustion; and it 
can load 10 kg of biomass for each operation batch.

According to the recent literature [3, 4, 20, 22, 25, 41, 
42] and on-field experiments, three factors are found to 
influence the effectiveness of pyrolysis, including the 
moisture content of the prunings, combustion time, 
and combustion temperature. Pyrolysis of prunings in 
this LO system shows that biochar from mango prun-
ings reached the highest energy content among that of 

other tree prunings. The HHV of all kinds of biochar is 
consistent with the studies of [42, 44]; HHV of biochars 
from dried leaves of jackfruit and mango is 16  MJ/kg 
and 18  MJ/kg, respectively. Besides, the HHV of the 
biomass will increase when biomass is pelleted. Pellet-
ing a mix of biochar with other biomass resources such 
as fresh manure, biogas sludge, and compost also raises 
its energy content. The proportion of biochar in these 
pellet products should account for 10–40%. Therefore, 
the mango tree prunings would recommend as feed-
stocks for all the treatment models to compute the pre-
dicted objective functions.

Specifications of biomass pellet are based on European 
and Asian standards in terms of conditions for pelleting 
such as pressure, particle size, moisture content, mate-
rial pre-treatment, and consistent equipment [5]. These 
standards also regulate the pellet values on size, quality, 
and composition. Pellet is designed as a cylindrical form 
with a diameter from 6 to 25 mm, and 3 mm to 50 mm in 
length [20]. This research employs a civil pellet machine, 
that can load 100 kg biomass per hour, and pellet prod-
ucts from biomass has a diameter of 3  mm, 5  mm, and 
8 mm, respectively, with the same length of 3 mm (Fig. 2). 
Such sizes have little effect on the energy content of the 
pellet products.

Fig. 2  Charcoal oven (a) and pellet machine (b), and biochar and biomass pellet (c)
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Mathematical optimization for EEE efficiency of treatment 
models
Mathematical optimization is engaged in the objective 
functions of waste treatment models regarding EEE effi-
ciency. A set of variables involved in the performance 
efficiency of the model consists of data of input and 
output from both biomass and the treatment facilities. 
Parameters of the objective and input flow are built for 
each treatment process, and scenario of multiple waste 
treatment solutions (or waste treatment model) as well. 
The treatment models connect current existing tech-
niques (biogas digestion and composting) with pyrolysis 
and pelleting. The parameters of performance efficiency 
are computed by the mathematical formulas (2 and 3). 
They are used to compare the models in the discussion 
part of this article, in which flows of input and output 
are analyzed separately for each treatment and the com-
bined treatment models. The general equation describes 
the relationship between the efficiency yα,β (y: OTI, STE, 
MTP) and the input Rin (IE, PP, ETO) of the energy car-
rier α and the output Rout (OE, PP, STO) of the energy 
carrier β. There can be many energy carriers of input and 
output. This equation is represented as follows:

(2)













Routα

Routβ

...

Routω













=










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
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









Rinα

Rinβ

...

Rinω













,

where conditions of treatment performance optimization 
are y > 1 and y reaches a maximum value.

The functional objective for product yield is the ratio 
of energy output to input energy or energy efficiency, 
wherein the number of output products and input feed-
stock is based on their HHV when calculating STO. The 
functional objective for economic benefit is to minimize 
total costs, in other words, to adjust treatment costs to 
gain market-competitive pricing for products. Treatment 
with a low cost for both investment and operation and 
the higher revenue obtained by output products proves 
its economic benefit. The estimated price of an output 
product is calculated simply by dividing the total cost 
for the period by the number of output products. The 
functional target for reducing CO2 emissions is based 
on the carbon content of the input and output biomass. 
The performance efficiency of a model (E) is the integra-
tion of objective parameters, and it is optimized using the 
expression 3 as.

The algorithms are applied to evaluate the EEE effi-
ciency of the waste treatment model for a LO system. The 
system boundary covers on an orchard, a pig shed, and 
a biogas tank. Data of the treatment model are based on 
either actual information of the current system or calcu-
lation. The energy content and carbon content of the bio-
mass in the treatment are shown in Table 2. Mango tree 
prunings and pig manure are collected every month, and 

(3)E =

∑

α,βǫRin,Rout

OTIα,βMTPα,βSTEα,β → max.

Table 2  Content of energy and carbon of biomass in the treatment model

– not applicable to calculate CO2 content
a CH4 is used to estimate the emissions of CO2 from burning biogas. Density of CH4 is 0.6 kg per a volume of biogas

No. Input/output Short form of input/
output

Unit HHV C References
MJ/unit %

1 Prunings PR kg 16.76 45 [42]

2 Manure slurry MS kg 12.52 37.15

3 Biogas sludge BS kg 13.45 38.55

4 Biogas BG m3 22 a [46]

5 Compost from manure slurry CP ms kg 11.77 31.1

6 Biochar from prunings BC pr kg 22.79 59.72

7 Biochar from biogas sludge BC bs kg 13 32.15 [26]

8 Biochar from manure slurry BC ms kg 21.12 67.7 [45]

9 Biochar from compost (from manure slurry) BC cpms kg 14.08 34.79 [27]

10 Pellet from biogas sludge PL bs kg 14.91 38.4

11 Pellet from manure slurry PL ms kg 13.4 38.01

12 Pellet from biochar (from prunings) PL bcpr kg 24.9 69.84

13 Pellet from compost (from manure slurry) PL cpms kg 12.13 33.75

14 Electricity EL kWh 3.6 –

15 Methane gas CH4
a kg 40 62.5 [47]
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are about 6  kg and 600  kg, respectively. From the total 
quantity of collected pig manure, about 22 m3 of biogas 
is generated in the biogas tank within a month. The oper-
ating efficiency of biogas tank is 0.036 m3 of biogas per 
one kilogram of fresh manure, and fresh manure con-
tains 90% of moisture content. The moisture content 
is reduced by 50% after composting. All fresh manure, 
biogas sludge, and compost are dried naturally to get the 
moisture content from 10 to 15% before being used for 
pyrolysis or pelleting. The efficiency of a charcoal oven 
yields 35%. The energy content of biochar from orchard 
prunings is relatively higher than that from compost and 
biogas sludge, as indicated in the previous studies of [26, 
27, 45].

The economic data of the items involving in the treat-
ment are presented in Table 3. They are used to calculate 
the cost of input parameters and the profit of the output 
products. The waste treatment of this LO system is con-
sidered for calculation in 1 month; it is the time for raw 
biomass to be converted into compost or to decompose 
partly in the biogas tank. Thus, the total investment in 
each treatment facility is equally divided by the lifespan of 
the facility into the cost for a month. This study chooses 
the price of the secondary products with the lowest price 
based on the literature to investigate the potential for 
the treatment models to bring profit. This profit will be 
a good source of additional income to support the house-
hold’s livelihood. The market price of biomass pellets 
ranges from 90 to 100 USD per ton, which is applied for 
both biofuel and fertilizer [28]. Biomass pellets are priced 
from 78 to 120 USD per ton when exported to Asian 
countries [7]. The international market price of bio-
char is 2 times higher than compost and 4 times higher 
than energy products for biomass digested. Besides, the 
system does not take labor costs into account, because 
the labor force comes from the family members of the 

household, and this helps to reduce the predicted price of 
the output product.

Results and discussion
Scenarios of treatment model
For selecting treatment solutions for the LO system, a 
large quantity of pig manure can be used as feedstock 
for most treatment solutions. The quantity of mango 
tree prunings, however, accounts for 1% of that of pig 
manure. Thus, the prunings are only used as feedstock 
for either the charcoal oven or pellet machine. The char-
coal oven utilizes biogas from the biogas tank to combust 
the prunings into biochar; the biochar reduces more CO2 
emissions than wood when used as biofuel. With 5 kWh 
created by one volume of biogas [46], the biogas tank 
can generate about 110 kWh (400 MJ) in a month, only 
enough to combust from 10 to 20 kg of mango prunings 
in a charcoal oven. That causes insufficient biogas to pro-
duce electricity for the system.

Due to the advantages of biofuel as mentioned above, 
biochars and biomass pellets can potentially support 
income in this LO household system. Thereby, scenarios 
are developed for treatment models to energy products 
for the existing LO system. The models show the poten-
tials of utilizing various kinds of biowaste to generate 
secondary energy products. The scenarios are simulated 
by models (I) to (XII) and categorized by three groups 
(Fig.  3), including Group 1: Pyrolysis and pelleting are 
prioritized for the system as presented in models (I) to 
(IV); Group 2: All solutions for treating both prunings 
and pig manure are simulated by the four models from 
(V) to (VIII); and Group 3: Models from (IX) to (XII) 
have both pelleting and either composting or anaerobic 
digestion, and Model (XII) has only pelleting. These pro-
posed models have no treatment of mixing biochar from 
prunings with other biomass. It is because that the mass 
of this biochar is 20 times lower than that of other bio-
mass, not enough for the other products.

Estimation of profit for proposed model
The local market has not discovered commercial value 
for biochar products, but biochar and biomass pellet 
have high economic value in the international market, 
as presented in the study of Raviv [7]. Besides, biogas is 
widely aware of its practical application in a small-scale 
farming household. Biogas production on a large scale 
for co-generating electricity to the regional power grid is 
profitable but requires a large sum of investment capital. 
Many commercial opportunities for biogas were evalu-
ated by the literature of [7, 28], but they are not feasible 
for applying to a single household. Therefore, biogas is 
not considered for its profitability in this study, so biogas 
is used as combusting fuel for the charcoal oven.

Table 3  Economic value of investment (for 1  month) and 
market price of biomass

(1 USD = 23,000 VND)

No. Item Unit Value

Input

 16 Biogas tank (T) VND 83,333

 17 Charcoal oven (C) VND 3333

 18 Pellet machine (M) VND 58,333

 19 Compost block (B) VND 8333

 20 Electricity (EL) VND/kWh 1500

Output

 21 PL VND/kg 1800

 22 BC VND/kg 1500

 23 CP VND/kg 300
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Fig. 3  Simulation of groups of proposed treatment models
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Models (I) are not economically efficient when pig 
manure is only used for generating biogas for combust-
ing the charcoal oven. In addition, about 10 kg of biochar 
of prunings BC pr would bring profits. However, to make 
profits from pelleting this biochar, the system needs more 
than 100 kg prunings. Thus, the models need over 50 pigs 
to generate sufficient biogas to combust the quantity of 
the prunings. Thus, scenario for treating a large volume 

of prunings are analyzed for the model (XIII) (Fig.  4). 
Because orchard prunings need to be chopped into small 
pieces before pelleting and composting, it takes much 
extra expense for the system. Thus, model (XIII) excludes 
composting but applies to pelleting biochars from prun-
ings. Besides, this model adds the treatment of mixing 
biochar from prunings with other biomass. According to 
Hung [26], biochar from biogas sludge BC bs has lower 

Fig. 3  continued

Fig. 4  Simulation of treatment models with assumed data
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energy content than other biochars, so the model does 
not include pyrolyzing biogas sludge.

In terms of profitability MTP, models (II) to (IV) cre-
ates pellet products that achieve the profit target. For 
models (V) to (VIII), economic benefits from compost 
are higher than the pellet product. Although the amount 
of manure is halved for treatment solutions in models (V) 
and (VI), compost and pellet product from the manure 
give profits. However, only the compost products guar-
antee profitability in models (VII) to (VIII) when the 
amount of manure is equally divided for treatment solu-
tions in these models. Models of Group 3 achieve eco-
nomic benefits from pellet products, whose feedstock is 
pig manure and compost from pig manure. In this group, 
both compost and pellet products from prunings are 
not profitable; thus, only when the quantity of prunings 
is more than 100  kg, all treatment solutions for prun-
ings obtain economic benefits. Models (II) to (IV) cre-
ates pellet products (PL ms, PL bs) that achieve the profit 
target. For models (V) to (VIII), economic benefits from 
compost are higher than that from the pellet product. 
Although the amount of manure is halved for treatment 
solutions in models (V) and (VI), compost and pellet 
products from this manure give profits. However, only 
the compost products guarantee profitability in mod-
els (VII) to (VIII) when the amount of manure is equally 
divided for treatment solutions in these models. Models 
of Group 3 achieve economic benefits from pellet prod-
ucts, whose feedstock is pig manure and compost from 
pig manure. In this group, both compost and pellet prod-
ucts from prunings are not profitable; thus, only when 
the quantity of prunings is more than 100  kg, all treat-
ment solutions for prunings obtain economic benefits. In 
general, with the same amount of pig manure feedstock 
for composting, anaerobic digesting, and pelleting, com-
posting achieves the best profit.

It is concluded that two models (III) in group 1 and 
(VI) in group 3 are highly profitable among models with 
the same pellet product from biogas sludge. Moreover, 
profit comes from the pellet product of pig manure by 
the model (III). The model (VI) has profitable products 
such as compost from pig manure (CP ms) and pellet 
product from this compost (PL cpms). Likewise, model 
(X) without a charcoal oven still gains profits from the 
same products as the model (VI).

As mentioned, a biomass pellet has a higher HHV con-
tent than that of mixing biomass with biochar. Besides, 
a proportion of biochar in the mixture must be above 
10% to increase the HHV of the mixed product. There-
fore, model (XIII) is consistent with a volume of prun-
ings higher than 100 kg per month, together with 3000 kg 
manure to generate sufficient biogas for the charcoal 
oven. The profits come from all products by this model. 

Therein, profits from pyrolyzing and pelleting pig manure 
exceed ten times higher than the investment cost on the 
treatment.

In case the amount feedstock of biomass for biochar is 
large enough, as assumed in model (XIII), biochar prod-
ucts are economically viable. MTP of the biochars such 
as BC pr, BC ms in this model is 4–10 times higher than 
that in the current system. However, MTP from their pel-
let products such as PL bcpr, PL bcms lower than 1 indi-
cates ineffective investment. Thus, pelleting biochar will 
not bring economic benefits due to the high investment 
cost of a pellet machine to produce pellets of biochar 
alone.

Energy and environment efficiency
The energy efficiency of the treatment models is evalu-
ated based on the energy contents of biomass. The HHV 
of pig manure and its secondary products such as biogas 
sludge and compost range from 11 to 15  MJ, in which 
biogas sludge has the highest HHV and compost has 
the lowest HHV. Biochars from these wastes have an 
increased HHV, except for biochar from biogas sludge 
[26]. The energy contents of biomass used in our study 
(Table 2) are lower than those found in the literature. For 
example, the HHV of pig manure is 19.39 MJ/kg accord-
ing to Cantrell et al. [45], 16.64 MJ/kg of solid digestate 
in the study of [26]. Most of the HHV levels are low due 
to the low carbon content of feeds for pigs. In addition, 
compared to biochar from compost, biochar from biogas 
sludge has a higher energy content [27]. The biomass pel-
let has a higher HHV than raw biomass. Therefore, most 
of the models with pelleting are efficient in energy yield. 
It is because the pellet machine creates output products 
with total energy content higher than the energy of bio-
mass feedstock, except for pelleting compost from pig 
manure. For pyrolyzing and composting orchard prun-
ings, total energy efficiency on output products is lower 
than input feedstock. In general, models (III), (VI), (VII), 
and (VIII) offer higher energy efficiency than the rest 
models.

Based on the carbon content in biomass, all the bio-
mass give about 0.1  kg CO2 per one megajoule  (MJ) of 
their energy. In other words, the carbon content is posi-
tively correlated with the energy content of the biomass 
in this study. The amount of CO2 captured in both the 
output product and input biomass depends on the quan-
tities of biomass involved in the treatment. Therefore, the 
models (III), (VI), (VII), and (VIII) gain CO2 sequestra-
tion more than CO2 emission.

Optimization of EEE efficiency
MTP, OTI, and STE of producing biochar products in 
groups 1 and 2 failed to bring the expected results (< 1), 
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similar to pellet products. It shows that investing in a 
charcoal oven in the conditions of the existing house-
hold is not cost–beneficial. Meanwhile, pellet products 
from pig waste (PL ms and PL bs) in all groups achieved 
EEE benefits with MTP, OTI, and STE values > 1 but 
only ranged from 1 to 2. For group 3, compost from pig 
manure (CP ms) yielded higher EEE efficiency than all 
products in the models. Compared with the inefficiencies 
of the composts from prunings (CP pr), this product has 
MTP, OTI, and STE of 2–4 times higher. As the invest-
ment of a pellet machine mentioned above, a charcoal 
oven is also unprofitable for small quantities of biomass 
feedstock to produce biochars.

Among models in group 3, model (X) achieves all EEE 
efficiency from composting and pelleting pig manure. 
According to European standards for pellet quality in 
the literature of [5, 48], the HHV of raw biomass and 
compost is lower than the standardized HHV level for 
biofuels. The standard regulates the HHV level of bio-
fuels equal to 16 MJ/kg or more. Thus, the models with 
a charcoal oven and pellet machine show a high energy 
efficiency due to their energy products as biochars and 
pellet products. The results of EEE efficiency analysis for 
the current LO system show that two models (III) and 
(VI) give higher overall EEE efficiency than the rest of 
the models. The EEE efficiency of these models is mainly 

based on the economic and energy value of the output 
products and is presented in detail in Fig. 5.

Model (XIII) is applied for a large number of orchard 
prunings (~ 100 kg). It leads the LO system to get about 
3000 kg pig manure to generate enough biogas for pyro-
lyzing prunings. It proves that all output products from 
this model are profitable. The model with assumed data 
of initial discharges makes a good profit of 8–20 times 
higher than the model with actual data. Besides, for both 
the hypothetical and current data, the pellet machine 
in this model yields energy efficiency due to the higher 
energy content of the output products compared with the 
energy content of inputs. The analytical results on eco-
nomic and energy efficiency are presented in Fig. 6. Pyro-
lyzing is also effective in reducing CO2 emission, where 
the amount of CO2 gas sequestrated from the output 
products is higher than CO2 gas exhausted. The charcoal 
oven, in contrast, is not efficient in both the obtained 
energy and CO2 reduction. In addition, mixing biochar 
with biogas sludge in this model is beneficial to both the 
energy yield and the environment. Therefore, for the LO 
systems, which discharge a large amount of both orchard 
prunings and pig manure, the combination of charcoal 
oven and pellet machine could bring all efficiency to the 
economy, environment, and energy. With many bene-
fits among the proposed models, model (XIII) is a good 

(a) (b)

(c)
Fig. 5  EEE efficiency of treatment models of (a) pyrolysis and pelleting, (b) composting and pelleting, and (c) composting, pyrolysis and pelleting
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choice for LO systems besides models (III) and (VI). 
However, it is necessary to consider challenges for the 
system with a large number of orchard prunings. They 
may include restraints on economic supports and the 
availability of biomass residues on a regional scale [49].

Optimization of EEE efficiency for waste treat-
ment models in a LO system contributes to CO2 emis-
sion reduction and production of secondary biofuels as 
renewable sources. Analysis of the EEE efficiency is to 
Fig. out the potential treatment models for this system. 
The ideal models such as (III) and (VI) would bring addi-
tional incomes to enhance the livelihood of the local 
households. This work has proven economic benefits 
from integrating biogas tank, charcoal oven, and pel-
let machine in the same LO system. It shows that pel-
leting is effective in energy from feedstock such as fresh 
manure, biogas sludge, and biochar from prunings and 
pig manure. This treatment makes CO2 gas sequestra-
tion rather than CO2 gas exhaust. It also emphasizes the 
role of treatment solutions to create biofuel products. 
These products not only bring profitability for a small-
scale farming household but also reduce environmental 
issues. The results indicate that it is possible to optimize 
EEE efficiency for agricultural waste treatment models 
through proper analysis and related algorithms.

Conclusions
This work presents the potential of producing biofuel 
from treating organic wastes of a LO farming system at 
the household extent. The waste treatment models are 
designed by supplementing treatment facilities to the 
LO system to optimize their EEE efficiency. The design 
focuses on treatment facilities creating biofuel product. 
The optimal model would achieve objectives related to 
its performance efficiency in terms of (i) energy yield, (ii) 
CO2 gas reduction, and (iii) economic benefits. The study 

also finds that integrating pyrolysis and pelleting maxi-
mize the EEE efficiency of the treatment models.

This study prioritizes practical applications for treat-
ment facilities, so it provides a simulation of a set of data 
of inputs and outputs in treatment models for evaluating 
their EEE efficiency. Then, we propose an approach of 
multi-objective optimization by algorithms for the ideal 
models. Analyzing the EEE efficiency enables solving 
problems for waste treatment models, especially of eco-
nomic and environmental issues. The treatment solutions 
are simple techniques, easy to handle, and free of chemi-
cals. Therefore, similar agricultural systems can apply the 
results of this study. However, depending on particular 
conditions of the farming system, they would complete 
the solutions to support the livelihoods of rural people.
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