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Abstract 

Background  Achieving climate neutrality in cities is a major challenge, especially in light of rapid urbanization 
and the urgent need to combat climate change. This paper explores the role of advanced computational methods 
in the transition of cities to climate neutrality, with a focus on energy supply and transportation systems. Central 
to this are recent advances in artificial intelligence, particularly machine learning, which offer enhanced capabilities 
for analyzing and processing large, heterogeneous urban data. By integrating these computational tools, cities can 
develop and optimize complex models that enable real-time, data-driven decisions. Such strategies offer the potential 
to significantly reduce greenhouse gas emissions, improve energy efficiency in key infrastructures and strengthen 
the sustainability and resilience of cities. In addition, these approaches support predictive modeling and dynamic 
management of urban systems, enabling cities to address the multi-faceted challenges of climate change in a scal-
able and proactive way.

Main text  The methods, which go beyond traditional data processing, use state-of-the-art technologies such 
as deep learning and ensemble models to tackle the complexity of environmental parameters and resource man-
agement in urban systems. For example, recurrent neural networks have been trained to predict gas consumption 
in Ljubljana, enabling efficient allocation of energy resources up to 60 h in advance. Similarly, traffic flow predictions 
were made based on historical and weather-related data, providing insights for improved urban mobility. In the con-
text of logistics and public transportation, computational optimization techniques have demonstrated their poten-
tial to reduce congestion, emissions and operating costs, underlining their central role in creating more sustainable 
and efficient urban environments.

Conclusions  The integration of cutting-edge technologies, advanced data analytics and real-time decision-making 
processes represents a transformative pathway to developing sustainable, climate-resilient urban environments. 
These advanced computational methods enable cities to optimize resource management, improve energy efficiency 
and significantly reduce greenhouse gas emissions, thus actively contributing to global climate and environmental 
protection.
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Background
One of the main goals to achieve urban climate neutrality 
is to reduce greenhouse gas emissions. Consequently, cit-
ies, municipalities and regions are implementing various 
solutions to address this challenge and improve climate 
resilience across all sectors [1, 2]. This paper focuses on 
two key sectors that can be effectively optimized using 
advanced computational methods: the energy supply [3] 
and transportation [4]. In climate-neutral cities, not only 
must buildings be adapted or constructed according to 
high energy efficiency standards, but their energy needs 
must also be covered by sustainable and optimized sup-
ply systems. In addition, transport networks and infra-
structures should ensure safety, convenience and fast 
public transit [5]. Thus, traffic flows should be supported 
by multimodal transport systems, responsive traffic sig-
nals and dynamically adaptable signage that enable the 
efficient movement of people and goods.

Effective computing approaches are one of the means 
by which cities can become less carbon intensive. Such 
approaches are generally part of artificial intelligence (AI) 
and range from simple scheduling and allocation tech-
niques to more advanced optimizations supported by 
deep neural networks (DNN) and other machine learning 
(ML) approaches [6]. For example, for efficiently contrib-
uting to a sustainable energy ecosystem model of a city or 
a region, it is necessary to combine analysis, optimization 
and simulation tools. Such commonly used models are 
good predictors of the general energy dynamics. How-
ever, they can be inadequate when it comes to the large 
number of parameters, many end users, the assessment 
of different environmental impacts and the diversity of 
resources. This is where forecasting models based on ML 
offer enormous advantages. Based on historical data, they 
can be trained to accurately predict the future demand of 
a large group of consumers  [7, 8]. Their predictions can 
be used to develop more efficient strategies to logistically 
satisfy the demand in an efficient and climate-neutral 
way. Furthermore, by analyzing such predictive models, 
we can identify the regularities of how society behaves 
empirically and develop strategies that lead to reducing 
behaviors that hinder climate-neutral goals. In recent 
years, many ML methods have emerged that can support 
these efforts, such as deep learning, ensemble models, 
tree-based models, and so on.

The electrification of public transportation in cit-
ies is on the rise  [9], as electric busses are promising 
due to their high energy efficiency  [10]. In this context, 
the challenges related to the sustainable development 
of energy storage systems for electric vehicles must be 
adequately addressed, which includes the configuration 
of physical infrastructures and a wide range of related 
services [11]. In addition, traffic forecasting is crucial for 

the development of an intelligent prediction system that 
can contribute to traffic management and travel time 
reduction. It is important to combine and consider spa-
tiotemporal dependencies with other data that may have 
an impact on traffic patterns. Models based on ML can 
be very robust and at the same time react efficiently to 
dynamic traffic changes.

The important goal is also to develop and integrate 
high-level traffic and fleet management that enables glob-
ally optimal and integrated transportation of passengers 
and goods. Here, innovative dynamic balancing and 
priority-based management of vehicles can be used to 
develop fleet and traffic management solutions through 
machine learning and data fusion  [12]. These improve 
the capabilities of transportation authorities and opera-
tors and enable them to become effective conductors of 
future mobility networks  [13]. The innovations have the 
potential to reduce urban traffic and congestion, reduce 
pollution and improve quality of life [14].

At a time of unprecedented urbanization and the 
urgent need to combat climate change, the pursuit of 
urban climate neutrality is one of the greatest global chal-
lenges. As cities grow in population and complexity, so 
do their energy needs, carbon emissions and resource 
consumption. Advanced computing, with its enormous 
capacities for data analysis, simulation and optimization, 
is becoming an important key to revolutionizing urban 
landscapes. The integration of advanced computing tech-
nologies promises to enable cities to harness vast data 
streams, develop complex climate models and imple-
ment real-time, data-driven strategies that can drasti-
cally reduce greenhouse gas emissions, improve energy 
efficiency and strengthen urban resilience. This paper 
highlights the role of advanced computing in shaping the 
future of urban climate- neutrality and offers a compel-
ling pathway to sustainable, green cities that not only 
adapt to the changing climate, but also actively contrib-
ute to its mitigation and long-term preservation.

The intersection of advanced computing and urban 
climate neutrality has attracted considerable research 
attention in recent years. Here, we provide an overview 
of existing work that highlights the various applications 
of advanced computing technologies to promote sus-
tainability and urban climate neutrality. Data-driven 
approaches have become an essential part of optimizing 
urban energy consumption and reducing carbon emis-
sions. Researchers have used advanced data analytics 
techniques such as ML and predictive modeling to ana-
lyze energy consumption patterns and forecast future 
demand. A review focusing on electricity demand fore-
casting [15] concludes that 90% of studies nowadays apply 
AI methods compared to 10% of traditional engineer-
ing and statistical methods to solve energy forecasting 
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problems. This shows a clear trend and points to the use-
fulness of state-of-the-art computational methods in this 
sector. These methods can be very flexible and robust. 
For example, a regression model for electric load [16] by 
Al-azzawi et al., is able to account for non-trivial changes 
in demand during the COVID-19 pandemic. Moreover, 
such a methodology can become even more effective 
with a smart infrastructure such as an IoT-enabled smart 
grid [17].

Prediction methods that focus on building energy 
demands also show that AI-related tools such as support 
vector machine, neural networks and random forests [18] 
perform better than statistical tools such as linear regres-
sion and ARIMA [19]. Accurate energy planning and 
management in the early design phase can even prevent 
the construction of more energy-inefficient buildings 
[20]. Simulation tools such as EnergyPlus have been used 
to simulate the impact of different energy-efficient strate-
gies on the energy performance of buildings [21]. These 
approaches help identify optimal energy-saving strate-
gies. ML models have also been used to decide whether 
and what type of heat pump at the household level leads 
to an energy-efficient property of the building [22]. The 
study on the urban ecosystem model [23] discusses 
the importance of sustainable development by reduc-
ing energy consumption and minimizing environmen-
tal impact. The usual first step in creating a model is to 
understand the past and current situation. To this end, an 
ecosystem model must be created that combines analy-
sis, optimization and simulation modules. Such models 
improve the understanding of system dynamics and are 
therefore valuable tools for the development of sustain-
able energy systems tailored to the availability of local 
energy sources.

In the past, the demand for precise modeling and pre-
diction in forecasting has led to the emergence of vari-
ous ML methods. The field of statistics provides various 
models for univariate time series analysis. These models 
include the moving average (MA), autoregressive (AR), 
and autoregressive integrated moving average (ARIMA) 
[24]. These models are particularly suitable when only 
limited data is available. Several of these techniques 
were later extended to account for multivariate data and 
covariates, including VARIMA [25], ARMAX and ARI-
MAX  [26]. Initially, methods used traditional machine 
learning techniques, where temporal dependencies were 
taken into account by adding lag features, and considered 
the challenges as tabular issues  [27–29]. The introduc-
tion of more complicated neural network-based mod-
els, such as RNN  [30], where neuron connections can 
form a cycle, led to better accuracy  [31]. These models 
are suitable for managing temporal dependencies. With 
advances in modeling temporal data, innovations such as 

LSTM cells [32] were quickly integrated into forecasting. 
Alongside the progress with LSTMs, convolutional neu-
ral networks (CNNs) [33] gained traction. Initially devel-
oped for image classification, they were modified for 
time series analysis [34]. Recently, the focus has shifted 
to the development of models that are specifically tai-
lored to time series analysis. For example, the N-BEATS 
[35] structure excels in forecasting scenarios with a large 
amount of data. Similarly, DeepAR [36] is a renowned 
forecasting neural network that uses LSTM cells to esti-
mate parameters of a probability distribution, providing 
deeper insights into model uncertainty. It can work with 
multivariate time series, including future and past covari-
ates. More recently, transformer-based  [37] networks, 
such as Temporal Fusion Transformers for Interpretable 
Multi-horizon Time Series Forecasting, have been used 
for forecasting tasks. While deep learning methods are 
widely used in forecasting, other successful strategies 
should not be overlooked [38, 39].

The emergence of intelligent transportation solutions 
has been instrumental in reducing emissions caused by 
urban mobility. Petelin et  al. presented a real-time traf-
fic control system that reduces congestion and lowers 
emissions through adaptive traffic signal control in ref. 
[40]. The optimization of transport processes within a 
logistics chain is presented in ref. [41]. The authors look 
at reducing the costs of transportation, storage or pro-
duction processes and increasing efficiency in the execu-
tion of logistics operations. The overarching goal is to 
make more effective use of the means of transportation, 
technologies and human resources involved. In order to 
reduce logistics costs, shorten transportation time and 
increase the efficiency of logistics operations, Zhang et al. 
propose the use of a Mixed Integer Non-linear Program 
(MINLP) model [42]. The general algebraic modeling 
system is used to build the model to fully integrate each 
parameter of logistics transportation, the total distri-
bution time of the supply chain network, the coverage 
radius of the logistics base, the number of users, the total 
capacity of the logistics base, the type of rail and road 
transportation. The non-linear model is solved with a 
MINLP-based solver.

Suhua shows how intelligent logistics can improve 
people’s quality of life [43]. The paper proposes an opti-
mization system for logistics engineering based on ML 
and AI. Based on the classifier chain and the combined 
classifier chain, an improved multi-label chain learning 
method for high-dimensional data is proposed. Lv dis-
cusses the application of AI in the e-commerce logistics 
system [44]. The AI-based algorithms are used to accu-
rately calculate the relationship between the supply and 
demand of goods and the optimal path of actual logistics 
distribution. In addition to accurately predicting stock 
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levels, the use of AI also optimizes the associated inven-
tory variables, e.g., sorting period.

A recent review by Giuffrida et al. provides an overview 
of the advances related to last mile delivery [45]. In it, 
the optimization techniques are divided into traditional 
optimization models, machine learning approaches and 
mixed methods. The performance of a future reconfig-
urable and autonomous vehicle fleet in a highly dynamic 
operational scenario is evaluated in ref. [46]. When oper-
ating in a harsh environment under high risk of damage, 
the fleet must react to adversarial actions in real time. To 
account for the complexity and dynamics, the authors 
formulate an intelligent agent-based model for the deci-
sion-making process during fleet operations by combin-
ing real-time optimization with AI. The ML method is 
employed to optimize fleet management and achieve suf-
ficient output to reduce operational costs in ref. [47]. This 
is obtained by reducing the waiting time of trucks and 
the idle time of excavators in a mine based on the best 
selection of the fleet.

Another survey, by Alexandre et  al., outlines ML-
based solutions for public bus transportation and goes 
into detail on the modeling of solutions for travel time 
prediction or passenger flow prediction [48]. Electric 
vehicle (EV) charging infrastructure has been optimized 
using computational methods to ensure efficient energy 
distribution and integration with renewable energy 
sources [49]. Yoo et al. propose a new approach to solve 
the problem of designing bus networks and setting fre-
quencies, as the transportation network must meet the 
needs of both users and operators [50]. The proposed 
algorithm uses reinforcement learning for a simultane-
ous optimization of three key components: the number 
of bus lines, the route design and the service frequency. 
The algorithm is able to suggest the best set of bus routes 
without predetermining the total number of bus routes, 
which also reduces the total computation time. The bus 
routes can be dynamically adjusted according to the pas-
senger demand in real time. Ma et al. formulated a two-
stage stochastic programming model to minimize the 
total cost of vehicle travel time and the penalty for reject-
ing requests [51]. Vector similarity-based clustering and 
adaptive large neighborhood search algorithm were used 
to solve it.

Main text
Methods
Efficient advanced computing approaches are one of the 
means by which cities can become less energy and car-
bon intensive. Advanced computing approaches encom-
pass a wide range of techniques and methodologies 
that go beyond traditional computing methods. These 
approaches often use cutting-edge technologies and 

methods to solve complex problems, such as achiev-
ing urban climate neutrality. Below we categorize these 
approaches into software and hardware-based. Please 
note that this list is not exhaustive and that these are just 
a few examples of advanced computational approaches.

Software approaches include machine learning and 
deep learning [52], which use neural networks to analyze 
and learn from large data sets. These techniques are often 
used in applications such as pattern recognition and 
recommendation systems, where they excel at recogniz-
ing complex patterns and making accurate predictions. 
Further notable software-based approaches are Swarm 
Intelligence [53] and Evolutionary Algorithms [54]. These 
methods are inspired by the collective behavior of decen-
tralized systems such as insect swarms or bird flocks 
and by the principles of natural selection and evolution. 
They are particularly effective in solving optimization 
and decision-making problems because they harness 
the power of distributed problem-solving and iterative 
improvement. In addition to these approaches, simula-
tors  [55] play an important role in areas such as traffic 
management and other similar concepts. Through the 
use of computer models, simulations can replicate com-
plex systems or processes, enabling detailed analysis, 
experimentation and prediction of behaviors and out-
comes in different scenarios. This capability is invaluable 
when it comes to testing hypotheses and understanding 
the potential impact of different variables in a controlled, 
virtual environment, which in turn contributes to effec-
tive planning and decision-making.

On the hardware side, high-performance comput-
ing and distributed computing involve the use of super-
computers or clusters of high-performance servers to 
process large-scale simulations, weather forecasts and 
complex mathematical calculations. Edge computing [56] 
is another hardware approach that brings computa-
tion and data storage closer to the data source (e.g., IoT 
devices) to reduce latency and improve real-time pro-
cessing for applications such as autonomous vehicles and 
smart cities.

Advanced computing approaches
In recent years, we have witnessed great progress in the 
field of computer science, especially in the field of AI. The 
prevailing methodology for this is ML, which involves 
methods for training computer models using data, thus 
avoiding explicit programming and human intervention. 
This results in computer models that are not constrained 
by expert knowledge and can use the patterns present 
in the data to fulfill the task at hand. The three currently 
most popular and effective classes of approaches are deep 
learning, ensemble models and tree-based models, which 
were also used in our work.
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The deep learning method consists of training a multi-
layer model, usually an artificial neural network (ANN), 
on data using gradient-based training, which is usually 
executed on GPU hardware that enables fast and more 
energy-efficient implementation. ANN as a function is 
essentially a composition of parametrized linear func-
tions and fixed element-wise non-linear functions. Its 
characteristics are determined solely by the values of its 
parameters. It is known that ANNs can approximate any 
function with arbitrary precision [57]. In other words, if 
there exists a function that returns energy consumption 
or traffic flow status from available data, there also exists 
an arbitrarily accurate ANN that can do the same. How-
ever, the user still needs to find such an ANN using opti-
mization methods, a process known as ANN training. An 
example of such a model is shown in Fig. 1. ANN model 
can consists of many applications of linear and non-lin-
ear maps, in which case we speak of a deep neural net-
work. It is known [58] that the deeper ANN is the higher 
capacity the model has which means that deeper ANNs 
are able to capture a wider range of functions.

If the training data for ANN is a time series, which is 
the case for many real-world problems in the energy 
and transportation sectors, the ANN model also needs 
a mechanism to take the past into account. For example, 
when modeling energy demand, the future prediction of 
ANN cannot be based only on current features, such as 
the current weather, day of the week, time of day, etc., 
but also requires access to past weather data. Therefore, 
a sufficiently large (i.e., wide) ANN is needed that can 
process several days of data as a single input. However, 
very wide ANNs can lead to overfitting since the number 
of parameters of an ANN grows quadratically with the 
width. But there is also another, and more efficient way, 
for ANNs to know about past data. A special architec-
ture known as a recurrent neural network (RNN) can be 

used. An example of this is shown in the Figure. 2. Such 
ANNs contain feedback loops that allow the network to 
remember previous inputs. Therefore, an RNN can be fed 
with one instance of weather data at a time. In this way, 
an ANN with a small width (and therefore a manageable 
number of model parameters) can be used, which never-
theless takes past data into account.

The simplest way to implement ANN with feedback 
loops is the Elman network [59], also known as simple 
recurrent network (SRN). The action of an SRN layer is 
defined as

where xt is the input to the layer at time step t, h is the 
activation of the layer, b is the bias vector and W and U 
are matrices. In this way, a given layer activation depends 
only on the values coming from the previous layer and 
on the previous activation of the same layer. Therefore, h 
contains the information about previous activations that 
allow SRN to have a memory about the previous inputs.

Historically speaking, RNNs were seldomly used 
because of their inability to capture long-term correla-
tions [60]. These problems were overcome by the intro-
duction of gated units such as the long short memory 
(LSTM) and the gated recurrent unit (GRU) [61]. The 
idea behind gated RNN is that they use gates that deter-
mine whether the information should remain in the layer 
or be forgotten. For comparison, with SRN, past informa-
tion is forgotten at a constant rate. But gated RNN can 

(1)ht = tanh (Wxt +Uht−1 + b),

Fig. 1  Depiction of a feedforward artificial neural network model 
with two hidden layers where every step of model calculation 
is explicitly shown. Wi are matrices and σ is element-wise non-linear 
function

Fig. 2  Example of RNN model architecture with three hidden layers. 
Connections between layers are depicted with arrows and one step 
delay with black squares. Hidden layers get input from the previous 
time step as well as from the preceding layer
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control in which cases the information is lost and there-
fore such RNN can be trained to use long-range depend-
encies. The details of the actions in LSTM and GRU can 
be found in refs. [62, 63], respectively.

When we model demand or traffic flow, we are essen-
tially training a model that can statistically describe 
human behavior. Since features such as the time of day, 
day of the week, month and year strongly influence how 
we function, they need to be accessible to the model in 
a way that is most useful to us. An important observa-
tion is that these features are periodic and not ordinal. 
For example, Sunday is one day before Monday (periodic) 
and not six days before Monday (ordinal). There is a sim-
ple way to introduce this property directly into the data, 
which usually helps the model to train faster and achieve 
better accuracy with smaller data sets. Periodic time vari-
ables can be coded ordinally as

where t is the linear time and t0 is the period of this time 
variable (1 day, 1 week or 1 year). However, we can con-
vert these characteristics into a periodic form by using

In this variant, the model sees points at the end of the 
period that are close to those at the beginning of the 
period. On the other hand, using eq.   (3) doubles the 
number of input nodes for periodic time variables. This 
leads to a larger network, but with modern approaches 
and hardware this is rarely a limiting factor.

Machine learning models can often present a formi-
dable challenge for people who are not well-versed in 
the intricacies of the field [64]. The complex algorithms, 
parameter tuning and feature engineering required can 
be intimidating and difficult to grasp for non-experts. 
Considering this hurdle, AutoML (Automated Machine 
Learning)  [65] tools have proven to be valuable solu-
tions. These tools have been developed to streamline 
and automate the process of ML, making it accessible to 
a wider audience. By simplifying the model development 
process, AutoML enables non-experts to use the power 
of ML for their applications without the need for an in-
depth understanding  [66] of the underlying technology. 
This democratizes the field and enables more widespread 
adoption [67].

As highlighted in ref.  [68], AutoGluon simplifies the 
process of ML by automatically selecting algorithms, 
tuning hyperparameters and assembling stacks, reduc-
ing the need for in-depth ML expertise. When process-
ing tabular data, AutoGluon creates a robust predictive 
model by firstly training several base learning models, 

(2)to = t (mod) t0,

(3)tp =

[

sin(2π t/t0)
cos(2π t/t0)

]

.

including popular algorithms such as neural networks, 
random forests and gradient boosting machines. These 
baseline models are then subjected to a comprehensive 
hyperparameter optimization process to determine the 
best-performing configurations. AutoGluon then applies 
an automated stack ensembling strategy where the pre-
dictions of these different models are combined layer by 
layer to improve the overall prediction performance. This 
ensemble approach capitalizes on the strengths of the 
individual models and often outperforms the accuracy of 
the individual models. AutoGluon’s ability to deliver high 
performance with minimal manual intervention is also 
confirmed by its evaluation in the AutoML Benchmark 
(AMLB) study  [69], where it consistently outperformed 
other models in various scenarios.

Computational challenges
Achieving urban climate neutrality through advanced 
computing has several significant challenges. One major 
obstacle is handling the vast amounts of complex data 
needed for thorough climate modeling and analysis. 
Urban environments are complex systems in which fac-
tors such as traffic, infrastructure and local weather are 
closely and deeply interlinked. This complexity requires 
the development of sophisticated algorithms capable of 
processing large amounts of data, often in combination 
with complex simulations. Another challenge lies in real-
time decision-making, which is essential for real-time 
and effective interventions. This requires high-perfor-
mance computing to process data quickly and accurately. 
In addition, safeguarding sensitive urban data is crucial, 
as breaches could have serious consequences for city resi-
dents. The ever-changing nature of technology and data 
sources makes matters even more complex, requiring 
flexible computing infrastructures that can adapt to new 
innovations such as edge computing to address the needs 
of dynamic urban settings. These challenges highlight the 
importance of developing cutting-edge computing solu-
tions and supporting ongoing research in this area.

Urban energy management
Forecasting energy demand has significant potential to 
drive climate-neutrality efforts in cities. By accurately 
predicting energy consumption patterns, cities can pro-
actively develop and implement targeted energy effi-
ciency initiatives and demand reduction strategies. These 
forecasts enable local authorities to optimize resource 
allocation to renewable and low-carbon energy sources 
to encourage the transition away from fossil fuels. In 
addition, data-driven insights into residential gas con-
sumption enable the development of personalized con-
servation campaigns that raise awareness and encourage 
residents to adopt energy-saving behaviors. As cities 
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strive for climate neutrality, forecasting residential gas 
consumption becomes an important tool to align urban 
planning with sustainability goals, reduce emissions and 
promote a culture of conscious energy consumption at 
the household level.

Heating load forecasting for urban areas is an espe-
cially important special case since space heating has 
been recognized as the most energy-intensive end use in 
EU households accounting for about 70% of total energy 
consumption in buildings [70]. Because such large pro-
portion of energy is consumed for heating, especially 
during winter months, its modeling is a crucial compo-
nent of energy management. Possible inaccuracies in 
heating load forecasting can lead to serious disturbances 
in energy transportation chains. District heating and 
combined heat and power systems also benefit from this 
type of forecasting. Successful operation of both systems 
stands on solving a problem of optimal planning of heat-
ing resources. In order to search for an efficient sched-
ule which achieves that heating resources meet demand 
as close as possible, a short-term forecast is required. 
This means that we have important use cases that require 
accurate heating load forecasting for both several days 
into the future (for energy transportation) and several 
hours into the future (for district heating).

Demand–response and load balancing
Demand–response and load balancing are critical com-
ponents of modern urban energy management that are 
essential for optimizing energy consumption, improving 
grid stability and reducing environmental impact. In the 
context of a growing urban population and the increas-
ing electrification of various sectors, demand–response 
strategies enable cities to allocate energy resources effi-
ciently by incentivizing consumers to shift their electric-
ity consumption to off-peak hours. This not only relieves 
pressure on the electricity grid at peak times, but also 
enables the integration of renewable energy sources such 
as solar and wind energy by adapting energy production 
to the demand. Load balancing, on the other hand, is 
about distributing energy loads evenly across the grid to 
prevent overloading or underusage of the infrastructure, 
resulting in less wasted energy and higher system reliabil-
ity. Together, demand–response and load balancing are 
powerful tools in the urban energy manager’s toolbox, 
promoting sustainability, grid stability and cost efficiency 
in a world increasingly reliant on reliable and environ-
mentally friendly energy sources.

To achieve efficient energy balancing, we need high-
quality forecasting models that can predict both the 
demand and production of energy. The scheduling of 
assets within the energy infrastructure can then be based 
on the predictions of such forecasting models. Predicting 

future demand and production is not an easy task and 
depends on both natural and societal factors. In the fol-
lowing section, we show how advanced computational 
approaches can be used to acquire high-quality forecast-
ing models for the energy sector. We have chosen the 
natural gas demand forecasting problem as a use case 
because gas demand is closely linked to district heating 
demand, which is a major source of energy consumption 
in Europe.

Case study Ljubljana: gas consumption forecasting
To demonstrate the ability of the modern computational 
approaches, we trained recurrent neural network models 
to forecast gas consumption in a city of Ljubljana, Slo-
venia, up to 60 h into the future. Previous work on this 
problem has shown that deep neural networks perform 
the best [31], considering several standard ML models. In 
this section, we perform a further comparison to address 
which deep learning architectures and feature transfor-
mations are best suited for this type of energy demand 
forecasting. We tested three different RNN architectures 
(SRN, GRU and LSTM) and for two different encodings 
of time variables (ordinal and periodic).

In addition, we are interested in how models with dif-
ferent number of layers compare to each other. Models 
with 1 to 5 layers were tested. In order to have a reliable 
comparison, the number of model parameters is set to 
4000 for all models. To accomplish this, two models with 
different layer widths are created for each model instance 
(for each unit type and each layer count). The two mod-
els had a parameter count just below 4000 and just above 
4000, so the error of the model with 4000 parameters is 
the weighted sum of the two models whose parameter 
count is close to 4000. In this way, the model instances 
are truly comparable.

The models were trained on a dataset of 8 seasons of 
hourly gas consumption collected from a large gas dis-
tribution company in Slovenia. More details about the 
dataset and the problem can be found in ref. [71]. The 
accuracies of the models for different unit types, different 
number of layers and different time data feeds are shown 
in Fig. 3. As expected, the SRN models proved to be the 
least accurate. This can be attributed to the fact that SRN 
is not able to account for long-term dependencies. For a 
small number of layers, the LSTM unit is clearly superior, 
while for deeper architectures the LSTM and GRU units 
are comparable. The use of periodic time data feeding ( tp ) 
is advantageous, but a significant difference is only evi-
dent for a small number of layers. In the other cases, it 
appears that the networks have sufficient capacity and a 
large enough data set to learn this periodicity from the 
ordinal time representation.
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The training time of the neural network is very impor-
tant as it can be extremely long [60], especially in this case 
where we have RNNs with long sequences. The compari-
son of training times is shown in Table 1. The fastest unit 
is SRN, which was to be expected as this unit involves the 
fewest computations. LSTM has a much higher training 
time and GRU has the highest. The training was per-
formed with the Adam algorithm [72] using Keras [73] 
and the Theano [74] library. The hardware employed was 
a cluster with 48 Intel Xeon E5-2680 v3 processors and 1 
TB RAM. In addition, a Tesla K80 GPGPU was used.

The models examined in this section show excep-
tional accuracy compared to previous work where ML 
was applied on the same dataset [31, 71]. The best mod-
els developed for this study (e.g., LSTM with 3 layers) 
have a mean test error of 0.48 · 10−3 of the maximal 
daily demand, while existing models from the literature 
range from 1.06 · 10−3 to 3.87 · 10−3 of the maximal daily 
demand [31]. This is a two-fold improvement in accuracy 
due to a more thorough exploration of different deep 
learning architectures (different types of units, number 
of layers, and time encoding strategies). We have thus 

shown that careful fine-tuning and optimization of ML 
models can lead to extremely accurate forecasting models 
for the energy sector and enable efficient energy manage-
ment. This fine-tuning and extensive training comes at 
a higher computational cost, but thanks to the immense 
advances in hardware, such extensive architectural search 
has now become possible. Furthermore, the computa-
tional costs required to train exceptionally accurate mod-
els are greatly outweighed by the potential for savings in 
the energy sector, both financially and environmentally.

Urban mobility management
Urban mobility, in particular the prediction and optimi-
zation of traffic flow, plays an important role in the pur-
suit of urban climate neutrality. Accurate prediction of 
traffic flow enables cities to take proactive measures to 
minimize congestion, reduce fuel consumption and cut 
emissions. Using data-driven insights from sensors, GPS 
devices and historical traffic patterns, cities can anticipate 
peak traffic times and congestion hotspots to facilitate 
the implementation of dynamic traffic management strat-
egies. These strategies include real-time adjustments to 
traffic signal timing [75], lane management and rerouting 
to ensure smoother traffic flow and avoid idling, which 
helps reduce greenhouse gas emissions from vehicles. In 
addition, advanced traffic flow prediction models help 
develop and implement efficient public transportation 
systems, ride-sharing services and cycling networks that 
promote the adoption of sustainable mobility options 
that further reduce the use of private vehicles and their 
associated environmental impact. Ultimately, integrating 
traffic flow forecasting into urban mobility planning [76] 
enables cities to proactively reduce emissions, improve 
transportation efficiency and promote a more sustainable 
and climate-neutral urban environment.

The synergy between urban mobility and climate neu-
trality is seen by the potential of traffic flow prediction 
to bring a change in traffic behavior. Beyond reducing 
congestion and emissions, accurate forecasting models 
enable cities to make informed decisions about infra-
structure development, such as the strategic placement 
of electric vehicle charging stations, bike lanes and 

Fig. 3  Test error of RNN models for different units and for two types 
of data feeding [(t and  t̃  defined in Eqs. (2) and (3)] with respect 
to the number of layers without using dropout. All models used have 
an overall number of parameters equal to 4000 and are therefore 
comparable

Table 1  Training times in hours

#Layers On CPU On GPU

SRN LSTM GRU​ SRN LSTM GRU​

1 1.1 2.0 2.2 6.0 11.3 16.4

2 1.6 2.9 3.5 9.9 20.6 30.2

3 1.9 4.0 4.7 13.8 28.6 42.8

4 2.3 5.0 5.9 17.7 36.5 54.5

5 2.6 6.0 7.0 21.6 44.7 68.3
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pedestrian-friendly zones. This approach encourages a 
modal shift to greener alternatives and promotes a cul-
ture of sustainability. Using innovative technologies, such 
as machine learning and real-time data analytics, traffic 
flow forecasting gives urban planners and policy mak-
ers the tools they need to implement responsive traffic 
management solutions that adapt to changing travel pat-
terns and evolving urban dynamics. As cities strive for 
climate neutrality, integrating traffic flow forecasting into 
comprehensive mobility strategies embodies a forward-
looking approach that not only addresses the immediate 
challenges of traffic congestion, but also promotes long-
term sustainability goals through smarter traffic manage-
ment and reduced carbon emissions.

Transport optimization, which includes traffic flow 
prediction, logistics optimization and dynamic fleet 
management, has an important role in urban mobility. 
Namely, accurate predictions of traffic flow enable cit-
ies and companies to implement dynamic routing and 
scheduling, which makes logistics operations more effi-
cient. Optimizing logistics increases the efficiency of 
the supply chain and reduces costs and environmental 
impact by minimizing unnecessary transportation and 
optimizing the use of resources. Dynamic fleet manage-
ment, enabled by real-time data and advanced technolo-
gies, allows for flexible decision-making and optimization 
of routes, vehicle deployments and schedules to adapt to 
changing demands and conditions. These approaches are 
important not only to improve transportation and logis-
tics operations, but also to reduce the environmental 
footprint of urban mobility systems.

Traffic flow forecasting
Predictive modeling for urban traffic management often 
relies on real-time traffic conditions to generate up-to-
date forecasts  [77]. However, in many cities, infrastruc-
tural limitations prevent the collection of real-time data. 
This poses a challenge to the development of effective 
forecasting methods without the benefit of real-time data 
showing the interplay between current traffic flow and 
past data. Our research therefore focuses on alternative 
modeling techniques. At the center of our approach is 
comprehensive feature engineering that circumvents the 
need for instantaneous traffic updates. In this context, 
we use a recently introduced dataset [40] that describes 
traffic flow patterns from 2013 to 2020 in Ljubljana, Slo-
venia. This dataset facilitates the creation of models that 
combine historical traffic data with covariates such as 
weather conditions and public holidays. The previous 
article explains in detail which ML models are best suited 
for the use case and how to optimally set their hyperpa-
rameters. However, such a process of model selection and 
configuration requires a lot of expert knowledge about 

the different ML models. Therefore, in order to success-
fully model the traffic patterns, one must know and be 
able to collect the traffic data and one must know how to 
use this data to create models.

The Municipality of Ljubljana traffic data set (MOL-
TR), used in this study, comprises a comprehensive col-
lection of traffic-related information from the city of 
Ljubljana. This dataset comes from a network of traf-
fic counting stations strategically distributed across the 
city’s streets, especially on heavily traveled routes. These 
stations continuously monitor and record vehicle move-
ments and categorize them into eight different vehicle 
types, including cars, motorcycles, busses and various 
types of trucks. The dataset covers the period from 2013 
to 2020 and includes a total of 2,041,086 vehicle counts 
taken at 59 individual measuring stations, with data 
recorded every day at 15-minute intervals. This compre-
hensive dataset provides valuable insights into daily and 
weekly traffic volumes and reveals recurring peaks dur-
ing morning and afternoon rush hours and variations 
in traffic volume during weekends. It also accounts for 
missing data, relocation of monitoring stations and data 
collection errors, making it a valuable resource for traf-
fic modeling. The inclusion of weather data and infor-
mation on public holidays further enriches the dataset 
and enables a comprehensive analysis of various fac-
tors influencing traffic behavior in the city of Ljubljana. 
As already mentioned in the context of using models, in 
our study we evaluate the use of AutoML for predicting 
traffic flow. For our study, we use the AutoGluon frame-
work, which is designed to combine multiple ML models 
without requiring expert knowledge about their use and 
configuration. A common feature across various AutoML 
platforms is the need to set a time limit for model train-
ing. For our study, we set a modest time budget of one 
minute.

Choosing an appropriate prediction metric can be 
a complex task as it needs to align with our specific 
forecasting goals. In this study, we used mean absolute 
error (MAE) [78] as our chosen metric for reporting all 
results. MAE is defined as:

where yforecastc  and ytruec  represent the predicted and 
measured number of vehicles that pass the measuring 
station c within a certain time interval. It is important to 
note that this summation excludes missing values. The 
variable C corresponds to the total number of measuring 
stations.

For the model evaluation, we use a 4-fold train–
test split with an Expanding Window Validation 

(4)MAE =
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strategy  [79]. In this configuration, the four test sets 
correspond to different time periods: 2016–2017, 
2017–2018, 2018–2019 and 2019–2020. This approach 
allows us to evaluate the performance of the models in 
different and increasingly recent segments of the data-
set, providing a robust assessment of their predictive 
capabilities over time. Table  2 compares different ML 
models (random forest  [18], linear regression, neural 
networks  [80] and AutoGluon) based on their MAE 
accuracy  [81]. Several notable findings emerge from 
this comparison. As highlighted in the original paper, 
each model significantly outperforms the baseline mean 
predictor model. This indicates that each model can 
recognize certain traffic patterns and use these insights 
to predict the forthcoming traffic flow. In all test splits, 
the AutoGluon model provides the most accurate fore-
casts and outperforms the other models. This is not 
surprising as AutoGluon uses a diverse ensemble of ML 
models. It consistently outperforms the second best 
neural network across different years. This suggests 
that AutoML tools can serve as a user-friendly alterna-
tive to conventional ML models.

In summary, our study highlights the significant poten-
tial of AutoML tools as indispensable aids for people with 
limited expertise in ML. While a basic understanding of 

ML is still essential, these tools significantly automate the 
labor-intensive aspects typically associated with model 
development, thereby reducing the burden on users. 
The methodology outlined in this study, which leverages 
AutoML for tabular and forecasting tasks, offers both 
advantages and drawbacks compared to more traditional 
approaches. One of its key strengths is AutoML’s abil-
ity to often surpass the performance of manually tuned 
ML models, providing optimized results with minimal 
effort from the user. However, the automated nature of 
AutoML can sometimes obscure the inner workings of 
model selection and tuning, making it harder for users 
to apply domain-specific knowledge for fine-tuning. 
Despite these limitations, the practical use of AutoML 
shows great potential, simplifying the modeling process 
and allowing for more efficient/effective outcomes. This 
approach broadens access to ML, making it more avail-
able to a wider range of users, including those who may 
not have deep technical expertise. Integrating AutoML 
tools is, therefore, an important step in expanding the 
usability of advanced machine learning techniques.

Logistics optimization
Optimizing logistics through the use of data-driven rout-
ing, load consolidation and efficient delivery scheduling 
can reduce the carbon footprint of freight transportation. 
The integration of logistics optimization also encour-
ages the adoption of electric vehicles  [82] or alternative 
fuel vehicles, resulting in cleaner transportation options. 
In addition, optimized logistics systems  [83] can boost 
the growth of local markets and circular economies by 
reducing the need for long-distance transportation and 
encouraging sustainable consumption habits. As cit-
ies work toward climate neutrality, optimizing logistics 
becomes an important step in creating greener, more 
efficient urban ecosystems that balance economic growth 
and environmental protection. As freight transportation 
usually shares infrastructures with passenger transporta-
tion, freight transportation in urban areas has become a 
problem and requires appropriate solutions [84].

Several ambitious projects illustrate the importance of 
advanced computing in transforming logistics to reduce 
environmental impact and improve overall efficiency. The 
CONDUCTOR project [85] is dedicated to the develop-
ment, integration and demonstration of advanced traffic 
and fleet management systems and aims to seamlessly 
integrate different means of transportation while improv-
ing interoperability. This is achieved through an innova-
tive dynamic balancing and priority-based management 
of vehicles, including automated and conventional vehi-
cles. Some important features of this process related to 
advanced data processing are:

Table 2  MAE computed between the measured and predicted 
number of vehicles using various ML models

The evaluation was conducted on data from a previously unseen year. Each 
model underwent 20 rounds of training and evaluation across four distinct train/
test splits

Model Year MAE Std MAE

Baseline (Mean) 16–17 39.412 0.000

Baseline (Mean) 17–18 40.102 0.000

Baseline (Mean) 18–19 39.945 0.000

Baseline (Mean) 19–20 40.891 0.000

Linear regression 16–17 18.042 2.165

Linear regression 17–18 19.532 2.277

Linear regression 18–19 17.924 2.383

Linear regression 19–20 17.642 2.014

Random forest 16–17 12.624 2.982

Random forest 17–18 22.632 6.232

Random forest 18–19 16.832 2.945

Random forest 19–20 13.989 2.593

Neural network 16–17 9.192 1.082

Neural network 17–18 11.892 1.347

Neural network 18–19 10.720 1.998

Neural network 19–20 10.204 0.934

AutoGluon 16–17 8.623 1.065

AutoGluon 17–18 10.792 1.492

AutoGluon 18–19 10.261 1.890

AutoGluon 19–20 9.409 0.952
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•	 Machine learning and data fusion: CONDUCTOR 
uses machine learning and data fusion to develop 
next-generation simulation models and tools. These 
technologies enhance the capabilities of transpor-
tation authorities and operators to make informed 
decisions and become the conductors of future 
mobility networks.

•	 Autonomous Vehicle Integration: The project focuses 
on upgrading existing technologies to centralize con-
trol and put autonomous vehicles at the center of 
future urban transportation systems. This approach 
increases the safety, responsiveness and overall effi-
ciency of traffic and fleet management.

•	 Explainable AI: to support decision-making pro-
cesses and ensure their transparency in meeting sus-
tainability goals and societal interests.

Logistics service providers (LSPs) are struggling with 
increasing demand and unreliable traffic conditions, lead-
ing to challenges in maintaining reliability in the delivery 
process. This has led to low usage rates and empty miles 
for delivery vehicles, impacting customer satisfaction 
and business efficiency and contributing to emissions 
and congestion, especially in city centers where the num-
ber of delivery vehicles is expected to increase by 36% 
by 2030 due to the growth of e-commerce. At the same 
time, the transportation landscape continues to evolve, 
with a shift toward more flexible, on-demand passen-
ger transportation services and high-capacity options 
driven by vehicle automation. In this context, there is an 
opportunity to explore integrated solutions that combine 
parcel delivery and passenger trips, known as ’freight-on-
transit’ or ’ride-parcel-pooling’ (RPP), to optimize multi-
modal transportation networks through load-balancing 
strategies. The CONDUCTOR project aims to simulate 
and evaluate the effectiveness of these strategies [86] to 
address the challenges of growing e-commerce while 
considering their impact on service quality and individ-
ual costs for stakeholders, including LSPs.

The demand for the delivery of goods in cities has 
increased over the last decade. The introduction of 
e-commerce, boosted with various crises, is responsible 
for this shift and the increased traffic caused by last-mile 
delivery. The urban logistics use case in the CONDUC-
TOR project (Fig. 4) investigates and proposes solutions 
for last mile parcel delivery based on the integration of 
urban goods delivery with on-demand transportation 
services. The aim of the use case carried out in Madrid 
is to propose and simulate different strategies for coor-
dinating passenger and freight transport that reduce the 
volume of traffic associated with last-mile parcel delivery, 
exploiting synergies with on-demand passenger trans-
port services  [88]. If these vehicles offer the possibility 

of transporting parcels together with passengers (e.g., 
with a special locker in the vehicle), there could be room 
for integrated use for passenger and freight transport. 
Requests for the delivery of parcels and requests for pas-
senger trips can be combined in the algorithms used to 
optimize the service. Additional stops for parcel delivery 
can be set up on routes that are already used for passen-
ger transport, time slots that would remain unused if only 
passenger trips were considered can be used for parcel 
delivery, etc. A comprehensive understanding of passen-
ger demand patterns is key to identifying off-peak time 
slots  [89]. Vehicle capacity allocation strategies should 
anticipate and respond to temporary but abrupt changes 
in passenger demand, e.g., due to events or disruptions in 
other services or modes. As shown in ref.  [88], the main 
benefits of this approach are expected to be the reduc-
tion of: (i) the average travel time of the vehicles involved, 
(ii) the total distance traveled by delivery vehicles, (iii) the 
number of vehicles used to deliver goods, and (iv) trans-
portation emissions.

These concepts could be taken even further by envi-
sioning a sustainable multimodal transportation system 
in which transportation decisions are based on efficiency, 
societal impact and real-time information. To achieve 
this, we need to explore the benefits of connected and 
automated transportation for the entire set of operations, 
research optimal decision-making processes and iden-
tify new business models. Therefore, in recent years, the 
concept of synchromodality [90] is strongly promoted in 
scientific and political circles to achieve more environ-
mentally friendly transportation.

Fleet management
Effective fleet management, including the integration 
of electric busses (EBs), plays a transformative role in 
advancing urban climate neutrality [91]. Using smart 

Fig. 4  CONDUCTOR’s Use case 3 sketch (source [87])
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fleet management systems, cities can optimize routes, 
minimize idle time and improve maintenance practices, 
resulting in lower fuel consumption and emissions. The 
integration of EBs into the fleet represents a sustainable 
alternative to conventional diesel-powered busses, signif-
icantly reducing greenhouse gas emissions and improv-
ing air quality. However, electric busses require dedicated 
charging infrastructure due to their limited range and 
longer recharging times, making them less flexible than 
diesel busses and requiring special attention when plan-
ning and scheduling daily routes [92]. An overview of the 
problem of planning and scheduling electric busses can 
be found in [93, 94]. An intelligent charging infrastruc-
ture for EBs ensures efficient energy use and minimizes 
the load on the grid during peak demand.

The global shift toward electric urban transportation is 
evident, driven by continuous advances in various evolv-
ing technologies [95, 96]. These technologies undergo 
rigorous testing to determine their reliability and suit-
ability for specific applications. EBs rely on high-capac-
ity batteries, which often need to be charged during the 
day, and complex powertrain management systems. This 
requires testing in a wide range of road conditions and 
driving scenarios that are influenced by road characteris-
tics and climatic conditions.

Several research findings suggest that electric vehicle 
(EV) batteries are more stressed on hilly terrain than 
on flat roads. Recent studies on the effects of climatic 
conditions on the energy consumption of electric vehi-
cles have shown that battery consumption increases in 
winter, which is associated with lower energy recovery 
[49, 97]. Including climate parameters in mathematical 
models improves simulations, but conducting physi-
cal tests of EBs in regions with harsh climates pro-
vides more reliable results. We have studied numerous 
benchmark EB routes in cities across Europe and found 
that while these urban routes provide valuable test envi-
ronments, they may not subject EBs to sufficiently chal-
lenging conditions in terms of distances, temperatures 
and road gradients. To address this issue, we proposed 
a test route in Idrija, Slovenia, which is characterized by 
challenging incline sections [49]. The bus route in Idrija 
has a total length of 19.6 km, a maximum elevation of 
443  m, a minimum elevation of 300  m, a total ascent/
descent of 539 m with a maximum gradient and a maxi-
mum slope of 25% and is characterized by a continen-
tal climate with long, cold winters and high summer 
temperatures. According to ARSO [98], the maximum 
difference between the average daily maximum temper-
atures and the average daily minimum temperatures is 
about 25◦ C in one year. Conducting tests with EBs and 
integrating transportation, energy storage and charg-
ing systems into real-world benchmarking would allow 

for a more comprehensive assessment and validation 
of new technologies. The expected benefits of these 
benchmark results would also extend to future devel-
opments, including further improvements to technical 
solutions, particularly in similarly geographically chal-
lenging areas.

Public transportation networks in modern cities are 
multimodal and extremely complex. He et  al. propose 
methods to support efficient multi-criteria trip planning 
[99]. An interesting study on vehicle-to-grid technol-
ogy, where unused electric vehicles can serve as decen-
tralized energy storage for the power grid to balance 
demand fluctuations, was investigated in ref. [100]. ML 
algorithms help predict traffic patterns and thus facilitate 
the efficient allocation of resources and the development 
of environmentally friendly transport solutions [101, 
102]. Dynamic route planning is becoming increasingly 
relevant. With dynamic route planning, different routes 
can be found as the optimal choice, taking several crite-
ria into account, see Fig.  5a. The traffic network can be 
mapped in a graph so that intersections are represented 
by vertices and paths by edges, see 5b. With weighted 
edges, it is possible to identify the length of route parts, 
the degree of traffic congestion or the status of traffic reg-
ulation and transform the problem into a graph problem 
in which the role of different nodes and edges is exam-
ined by different graph measures [103]. An approach for 
shared subway shuttle busses based on crowd sourced 
mobile data, which includes prediction of passenger 
flows at stations and dynamic route planning was studied 
in ref. [104]. Further, Wang et al. propose a metric learn-
ing-based prediction algorithm to capture demand pat-
terns and develop a route planning optimizer for efficient 
bus deployment considering traffic dynamics [105]. Thus, 
advanced computing helps in the development and simu-
lation of electric (and autonomous) vehicles and acceler-
ates their integration into urban fleets.

Climate models and simulations carried out with 
the help of high-performance computers provide valu-
able insights into the effects of transportation-related 
emissions on air quality and give political decision-
makers pointers for sustainable urban planning and 
transport policy. In addition, the electrification of the 
fleet is in line with renewable energy targets, as cities 
can power the EBs with clean energy sources and thus 
further reduce their carbon footprint [106]. ML and 
linear programming are essential for fleet management, 
especially for EBs. Effective management requires 
both theoretical and practical testing. EBs require spe-
cial charging and planning due to their limited range. 
Real-world testing, such as in Idrija, Slovenia, validates 
performance. Smart charging and dynamic route plan-
ning improve operations. Informed policy regulations 
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support the sustainable integration of EBs, aligning 
with renewable energy goals and improving air quality.

Conclusions
Addressing urban climate neutrality requires the 
power of advanced computing. This paper focuses 
on the areas of energy supply and transportation and 
highlights the role of machine learning, deep learning 
and ensemble models in addressing the complex chal-
lenges of urban climate neutrality. The integration of 
cutting-edge technologies, advanced data analytics and 
real-time decision-making processes represents a path-
way to developing sustainable, climate-resilient urban 
environments. These advanced computational meth-
ods enable cities to optimize resource management, 
improve energy efficiency and significantly reduce 
greenhouse gas emissions, thus actively contributing 
to global climate and environmental protection. As cit-
ies pursue climate neutrality, energy, traffic and fleet 
management become a cornerstone strategy to create 
cleaner and more efficient urban systems that prioritize 
environmental wellbeing alongside efficient energy use 
and public transport.
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