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Abstract 

Background Domestic energy consumption contributes to over a quarter of the UK’s carbon emissions, understand-
ing how it is driven can be helpful for delivering a fair energy transition to net zero. Energy usage is noted as a spatial 
phenomenon, however, the spatial variability of how it is driven is rarely considered in existing UK studies. To con-
tribute to this research gap, this study examines the spatial variations in the relationship between domestic energy 
consumption and its driving factors using the local spatial statistical modelling technique multiscale geographically 
weighted regression (MGWR). With explanatory variables on dwelling and household characteristics, this study analyses 
data at Lower Layer Super Output Area (LSOA) level on the study area, Nottingham, a somewhat socio-economically 
deprived city that also has the UK’s largest district heating (DH) system supplying low-carbon residential heating.

Results The study reveals domestic energy consumption is driven by factors at different spatial scales with spatially 
varied or even spatially heterogeneous patterns. Specifically, higher domestic energy consumption is affected differ-
ently across local areas by larger percentages of dwellings with 4 or more bedrooms, unemployment, terraced dwell-
ings, whilst by smaller percentages of social-rented housing tenures and central heating type of district heating. The 
impacts of dwelling energy efficiency, median household income, percentage of households with 3 or more people, 
fuel poverty, and central heating with renewable energy, vary across different local areas. Therefore, while there are 
identifiable relationships between these factors and domestic energy consumption, they differ by locality, and aggre-
gated level analysis may fail to accurately to capture these patterns.

Conclusions Nuanced local patterns of how domestic energy consumption is driven suggest placed-based 
approaches and more local deliberation to devise policies may be more suitable than “one-size-fit-all” policy plans 
to achieve the envisioned outcomes of rapid and fair domestic energy decarbonisation and just energy transition 
to net zero.
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Background
Domestic energy consumption, or energy consumption 
of the residential sector, makes up a significant share of 
total energy consumption globally. Over a quarter of the 
UK’s total energy consumption is from domestic energy 
consumption, of which nearly 90% are from gas and elec-
tricity, with 80.3% used for space heating, hot water heat-
ing, and cooking, and the remaining 19.7% for lighting or 
appliances in 2022 [1]. While around 20% of the UK’s pri-
mary energy is from low-carbon sources, fossil fuel gen-
erated energy remains a large proportion in total energy 
usage [1]. With residential energy consumption consti-
tuting around a fourth of the UK’s total carbon emissions 
[2], domestic energy decarbonisation continues to be 
a major challenge in dealing with climate change [3]. In 
this context, developing better understanding of domes-
tic energy consumption can be helpful for devising poli-
cies for energy decarbonisation and net zero transition 
[4, 5]. 

Driving factors of domestic energy consumption in the UK
Though domestic energy consumption is traditionally 
studied from individual disciplinary perspectives, for 
instance with a specific focus on energy technologies or 
costs, this could overlook important contextual factors 
such as interactions between residents and technolo-
gies [6, 7]. Domestic energy consumption is thus widely 
accepted as a complex multidisciplinary phenomenon, 
which needs to be studied from both engineering and 
social science perspectives [8]. In this context, uncertain-
ties are crucial for understanding it and devising plans 
for its decarbonisation [9, 10]. In reviewing literature 
on drivers of domestic energy consumption, this study 
thus adapts the taxonomy of key uncertainties from Eyre 
and Baruah [9] as theoretical framework. This classi-
fies drivers into two categories by key uncertainties they 
contribute to: households’ demographic and economic 
characteristics that contribute to socio-economic uncer-
tainties, and dwelling’s physical characteristics that con-
tribute to socio-technical uncertainties. 

Current literature examining drivers of domestic 
energy consumption in the UK commonly look at a com-
bination of explanatory variables on physical characteris-
tics of dwellings, and the demographic, socio-economic, 
and sometimes the behavioural characteristics of house-
holds, with data analysed at household level [11–13], 
dwelling level [14], and geographical area level [4, 15, 
16]. A variety of research methods have been utilised to 
study how these factors drive domestic energy consump-
tion, including central tendency analysis and cross-tab-
ulation analysis [11, 14], correlation analysis and linear 
regression models [4, 12, 13, 15], and data-driven models 
using multilayer neural network, random forest, gradient 

boosting algorithms [16]. A combination of dwelling 
and household characteristics are commonly found to 
be significant driving factors: dwelling types [4, 13–16], 
number of bedrooms [4, 11, 12, 16], energy efficiency 
measures [13, 14], household size or composition [4, 12, 
14], income [4, 12, 14, 16], employment status [4, 12, 15], 
and housing tenures [4, 14]. 

Dwelling characteristics
Existing studies find similar results on how dwelling char-
acteristics affect domestic energy consumption. On num-
ber of bedrooms, Gassar et al. [16] find number of rooms 
are strongly related to more gas consumption in London. 
Fuerst et al. [12] similarly find greater number of beds is 
associated with higher gas consumption for space heat-
ing per capita across England. On dwelling types, Hueb-
ner et al. [13] find they are significant predictors, with flat 
and mid-terrace significantly associated with less con-
sumption. Wyatt [14] finds detached and flats have the 
highest electricity consumption, whereas detached and 
semi-detached have the highest gas consumption. Cheng 
and Steemers [15] find detached dwellings are associ-
ated with the highest consumption, whereas flats are the 
lowest, with semi-detached and mid- or end-terrace are 
with lower consumption in descending order. On dwell-
ing energy efficiency, previous studies identify better effi-
ciency leads to less consumption. The Domestic National 
Energy Efficiency Data-Framework (NEED) developed 
by UK Government [17] finds lower gas consumption 
is associated with better dwelling energy efficiency [18]. 
Cheng and Steemers [15] find lower boiler efficiency is 
associated with higher consumption; while Wyatt [14] 
finds energy efficiency measures, such as cavity wall insu-
lation and loft insulation, lead to less overall consump-
tion for all dwelling types. 

Household characteristics
Several household characteristics are commonly identi-
fied as important explanatory factors [19]. Income is a 
significant factor widely discovered to be positively asso-
ciated with domestic energy consumption in existing 
UK literature [4, 12, 15, 16]. Gassar et al. [16] find higher 
household income is associated with higher consump-
tion and identified income as the most influential factor. 
Fuerst et al. [12] find income to be more important than 
dwelling characteristics in explaining per capita energy 
consumption. Wyatt [14] finds higher income is consist-
ently associated with greater residential gas and electric-
ity consumption. On employment, Cheng and Steemers 
[15] find better employment status, which also manifest 
via type and size of dwellings households occupy, is corre-
lated with higher consumption. On social housing, Wyatt 
[14] finds it is associated with less gas and electricity 
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consumption. While for household size, Druckman and 
Jackson [4], Wyatt [14], Huebner et al. [13], and Domestic 
NEED [18] find higher consumption is related to larger 
household size or greater number of adult residents in 
household, whereas Fuerst et al. [12] find it is negatively 
correlated with per capita gas consumption.

Knowledge gaps
Although the literature has provided valuable insights 
into this research topic, there are still considerable 
knowledge gaps that require further investigation. The 
comprehensive review by Frederiks et  al. [19] finds in 
existing research, while socio-demographic factors are 
widely identified as important for explaining domestic 
energy consumption, how they influence its variability 
remains inconsistent and inconclusive. For levels at which 
domestic energy consumption are studied, the critical 
review of Harputlugil and de Wilde [20] points out much 
current research mostly focuses on a small number of 
buildings and individuals. Baker and Rylatt [11] also 
mention small-scale studies that meticulously monitor 
small numbers of dwellings, which had been the case 
for many UK studies, could lead to the problem of not 
being applicable to wider areas. Energy poverty, referred 
to as fuel poverty in the UK [21], is a situation of lack of 
access to adequate energy [21–23]. In a review by Han 
and Wei [24] on household energy consumption studies 
worldwide, energy poverty is identified as an emerging 
research frontier in domestic energy consumption 
research. Meanwhile, Langevin et  al. [25] note low-
income housing is an important aspect often overlooked 
in domestic energy consumption and its reduction, 
though this is rarely investigated in existing UK studies. 
Moreover, the review of UK’s bottom-up building stock 
models of residential energy consumption by Kavgic 
et  al. [26] identifies a major issue on uncertainties in 
socio-technical drivers of domestic energy consumption. 
Harputlugil and de Wilde [20] also highlight this issue, 
such as how consumption is affected by households 
using different types of central heating or behavioural 
changes from energy efficiency measures, and call for this 
knowledge gap to be addressed in future research.

Furthermore, domestic energy consumption is widely 
noted as a spatial phenomenon in research worldwide 
[27, 28], from the USA [29–31], China [32, 33], to 
European countries [34–36], including the UK [37–41]. 
However, for UK research, Cheng and Steemers [15] note 
a limitation in previous domestic energy consumption 
models is that their spatial resolution is predominantly 
at the aggregated national level, which could become 
inaccurate at the more disaggregated local levels, such 
as region and local authority. They hence encourage 
sub-national level models that can allow more detailed 

study at finer spatial resolution, which can be helpful 
for informing local governments’ energy-related 
policymaking, such as identifying target areas for energy 
efficiency interventions. On the other hand, Love and 
Cooper [42] note the lack of spatial properties in research 
design, which prompt further consideration on spatial 
effects in studying the relationship between domestic 
energy consumption and its driving factors. Additionally, 
to understand local dynamics to inform regional policies, 
it is important to recognise spatial heterogeneity in local 
characteristics and how they affect the target variables 
[43]. This aspect, however, is often overlooked with 
global measures used in traditional linear regression 
models [44]. This issue is also found to be the case in 
the aforementioned literature, where global regression 
models such as multiple linear regression (MLR) models 
are commonly applied [4, 12, 13, 15].

Exploring spatial variability in how domestic energy 
consumption is driven
Against this backdrop, this study innovatively applies 
the local spatial statistical modelling technique, 
geographically weighted regression (GWR), to examine 
the spatial variations in the relationship between 
domestic energy consumption and its driving factors. 
Similar to Tobler’s first law of geography which states 
“everything is related to everything else, but near things 
are more related than distant things” [45], GWR builds 
on the assumption that nearby observations have more 
influence on parameter estimates than observations that 
are more distant [46]. GWR is designed to deal with 
and explore spatial heterogeneity or non-stationarity in 
regression relationships, where relationships between 
variables cannot be simply explained by a global model 
[47–51]. GWR allows relationships in a regression 
model to vary over space, hence enables the exploration 
of spatial variability in the relationship between the 
dependent variable and independent variables [52–
54]. Moreover, local results from GWR can also be 
visualised with mapping for presenting their policy 
implications to stakeholders [55–57]. These features 
therefore make GWR a suitable technique to study the 
spatial variability in the relationship between domestic 
energy consumption and its driving factors in the UK, 
with potential to address the knowledge gap on spatial 
properties and inform regional policymaking with 
interpretable maps visualising local relationships.

In literature worldwide, GWR has been applied in 
environmental and socio-economic research [58] as 
well as interdisciplinary topics [59]. In UK literature, 
GWR has also been used to examine a wide range of 
research topics, from air pollution [60], land value [61, 
62], environmental conservation [63–65], to education 
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performance [66, 67], public health [68–70], domestic 
violence [71, 72], overcrowding [73], migration [74], 
fuel poverty [75], and low-carbon energy technology 
uptake [76]. In energy research worldwide, GWR has 
been applied in topics ranging from CO2 emissions 
from energy consumption [77–79], energy prices 
[80], energy expenditures [81], to energy justice 
[82]. However, for research on domestic energy 
consumption, GWR is only found to be applied on two 
other countries, respectively, on factors for electricity 
consumption in Korea [83] and determinants of 
household energy consumption in the Netherlands [84, 
85].

To contribute to the above-mentioned knowledge 
gaps and the emerging literature using GWR to 
explore domestic energy consumption, this study aims 
to examine the spatial variability in the relationship 
between domestic energy consumption and its 
driving factors. Based on the reviewed literature, 
it explanatory variables related to household and 
dwelling characteristics that are commonly found 
to be influential, as well as emerging variables that 
warrant further research. For dwelling characteristics, 
the study includes the number of bedrooms, dwelling 
types, energy efficiency, and central heating types. For 
household characteristics, it includes household size, 
income, employment status, fuel poverty, and housing 
tenure.

This study focuses on the unique study area 
Nottingham, a somewhat socio-economically deprived 
English city [86] which also has the UK’s largest district 
heating (DH) network supplying low-carbon residential 
heating [87]. Analysis is conducted at the spatial level 
of Lower Layer Super Output Area (LSOA). LSOAs 
are geographical areas for census statistics, they 
are made up of groups of 4 or 5 Output Areas (OAs) 
which are the lowest level of geographical area. Each 
LSOA comprises from 400 to 1200 households, or a 
residential population between 1000 and 3000 [88]. 
This level of data analysis and study area is chosen to 
address the research gap that previous literature either 
focused narrowly on certain buildings, missing boarder 
trends [11, 20], or was too generalised at the national 
level to reveal robust local dynamics [15].

Firstly, a MLR model is developed and Moran’s I and 
Geary’s C are tested on the residuals to check for spatial 
autocorrelation [89]. A spatial error model (SEM) is then 
estimated, which incorporates spatial autocorrelation 
by including a spatial autoregressive error term [90], 
to validate the advantages of GWR in investigating 
relationship with spatial autocorrelation. Next, a GWR 
model is developed to examine the spatial variability in 
the relationship between domestic energy consumption 

and explanatory variables across Nottingham LSOAs. To 
explore how the spatial variability can be best explained, a 
multiscale geographically weighted regression (MGWR) 
model is further developed to investigate the different 
spatial scales in this relationship.

Methods
Study area
Nottingham is a city in East Midlands, England, with 
124,740 households and 134,402 dwellings [91, 92]. 
Nottingham has the largest district heating network in 
the UK [87]. Powered by municipal waste incineration, 
the Nottingham district heating network has been 
providing residential energy for space heating and hot 
water to over 5000 dwellings for three decades [93]. 
However, fuel poverty and deprivation are both severe in 
Nottingham. In 2021, 18.3% of Nottingham households 
are in fuel poverty, much higher than East Midlands’ 
regional average of 13.6%, and the England average of 
13.1% [94, 95]. The Index of Multiple Deprivation (IMD), 
which measures the relative general socio-economic 
deprivation, ranks Nottingham the 11th most deprived 
among 317 local authorities across England [96]. Within 
Nottingham, local deprivation situations vary widely. 
While 4.4% of Nottingham LSOAs are in the 20% least 
deprived in England, 30.8% fall amongst the 10% most 
deprived, and 57.1% fall in the 20% most deprived [96].

Data collection
This study uses public datasets from Census 2021 and 
Office for National Statistics (ONS) for the dependent 
variable domestic energy consumption and explanatory 
variables on dwelling and household characteristics. 
Their information and data sources are presented in 
Table 1.

Dependent variable
Domestic energy consumption is calculated as the sum 
of annualised total domestic gas consumption [97] and 
annualised total domestic electricity consumption [98] 
at LSOA level. These two GOV.UK datasets use Census 
2011 LSOA boundaries, as most datasets for explanatory 
variables use Census 2021 LSOA boundaries, the latter 
is used for analysis. In Nottingham, from 2011 to 2021 
boundaries, 10 smaller previous LSOAs merged into 
5 current larger LSOAs, for their total domestic energy 
consumption, the sum of their previous components is 
calculated; for the 4 smaller current LSOAs divided from 
2 previous larger ones, their domestic energy consump-
tion data are not available, so they are excluded from 
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the analysis. Figure  1 maps domestic energy consump-
tion across the 175 Nottingham LSOAs, ranging from 
1,779,096 to 39,123,132 with a mean of 16,504,060 kWh.

Explanatory variables
Number of bedrooms. Dwellings are self-contained units 
of household accommodation, 3-bedroom dwellings 
are most common across England (40%), followed by 
2-bedroom (27.3%), 4-or-more-bedrooms (21.1%), and 
1-bedroom (11.6%) [107, 108]. To look at how dwellings 
with more bedrooms than usual affect domestic energy 
consumption, the percentage of dwellings with 4 or 
more bedrooms is included [99]. This ranges from 1.1 
to 28.8% across Nottingham LSOAs, with a mean of 
6.3%, which is lower than the overall level of 21.1% in 
England.

Dwelling types. In England, terraced dwellings are 
the second most common (23.0%) after semi-detached 
(31.5%), followed by detached (22.9%) and flat (17.1%) 
[107, 108]. To look at how this common dwelling type 

sharing multiple walls with neighbours affect domestic 
energy consumption, the percentage of terraced dwell-
ings is included [100]. This ranges from 0.41% to 69.1% 
across Nottingham LSOAs, with a mean of 27.6%, which 
is higher than the overall level of 23.0% in England.

Energy efficiency of housing. Energy Performance 
Certificates (EPC) assess intrinsic energy efficiency 
based on a dwelling’s physical characteristics, its ratings 
from A to G represent energy efficiency scores between 
100 and 0, with A (over 92) the most energy efficient, B 
(81–91), C (69–80), D (55–68), E (39–54), F (21–38) and 
G (1–20) the least [109]. This dataset is aggregated EPC 
energy efficiency scores in 2021, though only published 
at Middle Layer Super Output Area (MSOA) level 
[101]. MSOAs are the upper-level geographical area 
of LSOAs, each MSOA contains 4 or 5 LSOAs [88]. To 
look at how varied levels of dwellings’ energy efficiency 
affect domestic energy consumption, median energy 
efficiency scores are included. To be consistent with the 
LSOA level of analysis, MSOA level data are converted 

Table 1 Variable information and data sources

Variable Unit Data description Data level Year Data sources

Domestic.energy.consumption kWh Sum of annualised total domestic 
gas consumption and annualised 
total domestic electricity 
consumption

LSOA 2021 Lower and Middle Super Output 
Areas gas consumption [97]
Lower and Middle Super Output 
Areas electricity consumption [98]

Bedrooms.4.or.more % Percentage of dwellings 
with number of bedrooms being 
4 or more

LSOA 2021 Number of bedrooms [99]

Dwelling.terraced % Percentage of terraced dwellings LSOA 2021 Accommodation type [100]

Energy.efficiency.score number Median Energy Efficiency Score 
of all dwellings, measured 
by Energy Efficiency Certificate 
(EPC)

MSOA, converted to LSOA 2021 Energy efficiency of Housing [101]

Heating.renewable.energy % Central heating type being 
renewable energy, categorised 
as "renewable energy only"

LSOA 2021 Type of central heating 
in household [102]

Heating.district.heating % Central heating type being district 
heating, categorised as "district 
or communal heat networks only"

LSOA 2021 Type of central heating 
in household [102]

Household.3.or.more.people % Percentage of households 
with household size being three 
or more people

LSOA 2021 Household size [103]

Income £ Mean net annual household 
disposable income (equivalised) 
before housing costs

MSOA, converted to LSOA 2020 Income estimates for small areas 
[104]

Unemployed % Percentage of the unemployed, 
categorised as “never worked 
and long-term unemployed”

LSOA 2021 National Statistics Socio-economic 
Classification (NS-SEC) [105]

Fuel.poverty % Percentage of households in fuel 
poverty, measured by the Low 
Income Low Energy Efficiency 
(LILEE) indicator

LSOA 2021 Fuel poverty statistics [94]

Social.rented % Percentage of housing tenure type 
being social-rented

LSOA 2021 Tenure [106]
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to LSOA level, via LSOA-to-MSOA lookup that assigns 
data on median energy score from MSOAs to the LSOAs 
they contain [110]. Median energy efficiency score ranges 
from 58 to 77 across Nottingham LSOAs, with a mean of 
66.1, which is slightly higher than the overall level (66, D 
equivalent) in England [109].

Central heating types. The most common type of cen-
tral heating in England is “main gas only” (74.0%, 17.3 
million households), followed by “electric only” (8.7%, 
2.0 million), “two or more types of central heating (not 
including renewable energy)” (8.5%, 2.0 million); while 
“district or communal heat networks only” and “renew-
able energy only”, respectively, takes up 0.9% (217,000 
households) and 0.4% (92,000 households) [111]. Con-
sidering the widespread residential coverage of Not-
tingham’s district heating network and Nottingham City 
Council’s renewable energy initiatives [112], to look 
at how these two central heating types affect domes-
tic energy consumption, the percentages of renewable 
energy and district heating are included, respectively 
[102]. Across Nottingham LSOA, renewable energy and 
district heating, respectively, ranges from 0 to 2.6% with a 

mean of 0.66%, and from 0 to 49.1% with a mean of 2.5%, 
both are much higher than the overall levels in England.

Household size. In England, the most common size of 
household is 2 people, followed by 1, 3, and 4 or more 
people, with the average being 2.4 people [113]. To 
look at how households with higher-than-average size 
affect domestic energy consumption, the percentage of 
households with 3 or more people is included [103]. This 
ranges from 4.7% to 60.1% with a mean of 36.5% across 
Nottingham LSOAs.

Household income. For the mean net annual household 
disposable income, equivalised for household size to 
account for achieving the same living standard, across 
MSOAs in England and Wales, 2 of Nottingham MSOAs 
are among the bottom 50 [114]. The data on the mean 
net annual household disposable income (equivalised) 
before housing costs (BHC) are on the financial year 
ending (FYE) 2020, though only published at MSOA 
level [104]. To look at how varied levels of income affect 
domestic energy consumption, mean household income 
is included. To maintain consistency with the LSOA level 
of analysis, this MSOA level data is disaggregated to the 
LSOA level using an LSOA-to-MSOA lookup, which 

Fig. 1 Study area and dependent variable: a Nottingham in East Midlands, England; b domestic energy consumption across Nottingham LSOAs
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assigns mean household income data from MSOAs to 
the LSOAs they contain [110]. Household income ranges 
from £18,800 to £46,100 across Nottingham LSOAs, with 
a mean of £26,078.9. This mean falls within the lowest 
25th percentile (£28,500) in England and Wales.

Employment status. National Statistics Socio-economic 
Classification (NS-SEC) indicates a person’s socio-
economic position based on their occupation and other 
job characteristics. Across England and Wales, the 
“never worked and long-term unemployed” makes up 
8.5% or 4.1 million [115]. From the NS-SEC data [105], 
to look at how unemployment affects domestic energy 
consumption, the percentage of the unemployed is 
included. This ranges from 1.08% to 18.24%, with a mean 
of 9.13% across Nottingham LSOAs, which is higher than 
the overall unemployment level in England and Wales.

Fuel poverty. Low Income Low Energy Efficiency 
(LILEE) is the current fuel poverty indicator in England, it 
estimates fuel poverty based on the relationship between 
three main drivers: “energy efficiency of the home”, 
“household income”, “energy prices” [116]. Fuel poverty is 
measured as a collective outcome of low housing energy 
efficiency, low household income, and high energy prices. 
Specifically, LILEE determines a household to be fuel 
poor with two conditions: living in a dwelling with EPC 
rating below C, and with disposable income after housing 
costs (AHC) and energy needs being below poverty line. 
From this dataset [94], to look at how varied levels of 
fuel poverty affect domestic energy consumption, the 
percentage of fuel poor households is included. This 
ranges from 6.5 to 41.6% across Nottingham LSOAs with 
a mean of 17.9%, which is higher than 13.1%, the overall 
level of fuel poverty in England [95].

Housing tenures. In England, the most common major 
types of housing tenures are, in descending order, 
owner-occupied (62.4%), private-rented (20.4%), and 

social-rented (through local councils or housing asso-
ciations) (17.1%) [107]. To look at the emerging though 
less studied topic of how housing principally accessible 
to those on lower incomes affects domestic energy con-
sumption, the percentage of social-rented is included 
[106]. This ranges from 0.8 to 82.1% across Nottingham 
LSOAs, with a mean of 26.1%, which is higher than the 
overall 17.1% in England. Table 2 summarises descriptive 
data of all variables.

Multiple linear regression
MLR using ordinary least squares (OLS) calculates 
the relationship between the dependent variable and 
independent variables, allowing the examination of 
specific effects between them [117, 118], with key 
assumptions that observations across study areas are 
independent with constant variance, and error terms are 
not correlated, its equation is shown in Eq. (1) [119, 120]:

where Yi is the dependent variable, β0 is the intercept, xik 
is the k th independent variable at the point i , βk is the 
regression coefficient of the k th independent variable, 
and εi is the random error term. Using domestic energy 
consumption as the dependent variable and various 
explanatory variables, an MLR model is first developed 
to check for spatial correlation in its residuals. If spatial 
correlation is present, it would violate the MLR model’s 
key assumption regarding error terms, making it unsuit-
able for investigating the relationship between domestic 
energy consumption and the explanatory variables.

(1)Yi = β0 +

n
∑

k=1

βkxik + εi,

Table 2 Descriptive statistics of variables

Category Variable Mean Min Max SD

Domestic.energy.consumption 16504060.02 1779096.00 39123132.00 5301560.92

Dwelling characteristics Bedrooms.4.or.more 6.34 1.10 28.77 5.27

Dwelling.terraced 27.58 0.41 69.10 16.88

Energy.efficiency.score 66.06 58.00 77.00 4.51

Heating.renewable.energy 0.66 0.00 2.60 0.52

Heating.district.heating 2.51 0.00 49.06 7.46

Household characteristics Household.3.or.more.people 36.48 4.70 60.10 9.80

Income 26078.86 18800.00 46100.00 5218.32

Unemployed 9.13 1.08 18.24 3.24

Fuel.poverty 17.86 6.50 41.60 8.00

Social.rented 26.06 0.80 82.10 17.39
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Tests of spatial autocorrelation
To check for spatial correlation in the MLR model’s 
residuals, Moran’s I and Geary’s C , the two most 
common indices for assessing spatial autocorrelation [89, 
121], are used. Moran’s I measures how correlated are the 
values of neighbouring spatial objects, which indicates 
patterns of spatial clustering [76] and is commonly 
used for detecting whether spatial autocorrelation 
effects are present [122]. Its values ranges from − 1 to 1, 
with positive values suggesting tendency for clustering 
whereas negative for dispersion, its formula is shown in 
Eq. (2) [123]:

where n is the total number of spatial objects in the study 
area, in this case LSOAs in Nottingham, wij is an element 
of the inverse distance spatial weight matrix w , which 
indicates the neighbouring relationship of spatial units of 
n locations; xi and xj are values of the variable x at the 
coordinates i and j , x is the average of all observations for 
the variable x of the n spatial objects.

Geary’s C is more sensitive to difference in values 
between pairs of compared observations than the 
co-variation between the pairs, thus indicating 
more local variations compared to the more global 
indicator of Moran’s I [124]. Geary’s C ranges from 0 
to positive values, with value of 1 indicates no spatial 
autocorrelation, values below 1 representing increasing 
positive spatial autocorrelation, and above 1 indicating 
increasing negative spatial autocorrelation, its formula is 
shown in Eq. (3) [89]:

where wij , n , xi , xj , x are analogous to those in Moran’s I . 
As Nottingham LSOAs are neighbouring polygons shar-
ing boundaries, for both indicators, the spatial weight 
matrix is created using the first-order Queens’ contiguity 
approach.

Spatial error model
To validate the advantages of GWR in investigating 
relationships with spatial autocorrelation, a SEM 
incorporating a spatial autoregressive error term [90] 
is developed before proceeding to GWR. SEM achieves 
this by assuming spatial dependence in OLS residuals, 
it decomposes OLS residuals into two components: the 
spatially dependent error and the spatially independent 
random error, its formula is shown in Eq. (4) [125, 126]:

(2)Moran′sI =
n

∑n
i=1

∑n
j=1

wij
·

∑n
i=1

∑n
j=1

wij
(

xi − x
)

(

xj − x
)

∑n
i=1

(

xi − x
)2

,

(3)Geary′sC =
n− 1

2
∑n

i=1

∑n
j=1

wij
·

∑n
i=1

∑n
j=1

wij

(

xi − xj

)2

∑n
i=1

(

xi − x
)2

,

where Yi , xik , βk are analogous to those in OLS, µi is 
the spatially dependent error at location i ; wi is the 
spatial weight matrix; � is the coefficient of the spatially 
dependent errors; and εi is the spatially independent 
random error. For the spatial error coefficient � , a positive 
value indicates positive spatial dependence, whereas 
negative value indicates negative spatial dependence; 
a statistically significant � suggests spatial dependence 
matters in explaining variations in the dependent variable 
[127], which can help validate advantages of GWR in 
investigating the relationship between domestic energy 
consumption and the explanatory variables.

Geographically weighted regression
In comparison to the global MLR model that uses 
constant regression coefficients to explain the whole 
study area, by accounting for spatial structure, GWR 
extends MLR to produce a separate model and local 
parameter estimates for each location [128, 129]. To 
examine the spatially varying relationship between 
domestic energy consumption and explanatory variables 
across Nottingham LSOAs, a GWR model is developed. 
GWR allows its model coefficients to vary spatially, it 
carries out location-based calibration of linear regression 
by giving greater weights on observations that are nearer 
to each regression point, its equation is shown in Eq. (5) 
[50, 130, 131]:

where Yi is the dependent variable at location i , (ui, vi) 
is the spatial coordinates of location i , xik is the k th 
independent variable at location i , βk(ui, vi) is the local 
regression coefficient for the k th independent variable 
at location i , and εi is the random error term at location 
i . GWR uses one single bandwidth for all variables [55]. 
In GWR, alternative to fixed bandwidth of one single 
geometric distance with varied number of neighbours, 
adaptive bandwidth uses constant number of neighbours 
and varied distance for each local observation, whose 
weight and coefficient are determined by the optimal 
distance between its neighbours and its centre [132]. 
GWR with adaptive bandwidth can thus consider how 
the relationship between variables vary spatially while 
reducing Modifiable Area Unit Problem (MAUP), the 
problem of inconsistent results created by artificially 
defined spatial boundaries, such as LSOAs, and 
improving fitting result of GWR [133, 134]. Adaptive 
bandwidth is hence applied in GWR.

(4)Yi =

n
∑

k=1

βkxik + �wiµi + εi,

(5)Yi = β0(ui, vi)+

n
∑

k=1

βk(ui, vi)xik + εi,
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Multiscale geographically weighted regression
Extending from GWR which applies one single 
bandwidth to all variables, MGWR allows relationships 
between dependent variable and explanatory variables 
to vary individually at different bandwidths or spatial 
scales [55]. Considering the explanatory variables 
representing varied local characteristics may interact 
with domestic energy consumption at different spatial 
scales, an MGWR model is further developed. For each 
explanatory variable, MGWR separately determines an 
optimal bandwidth based on the best Akaike Information 
Criterion (AIC) and its corrected version (AICc) [58, 
135]. MGWR is thus more flexible in considering the 
complexities in the spatially varying relationships, and 
can provide important information on the varied spatial 
scales at different explanatory variables interact with the 
dependent variable, its equation is shown in Eq. (6) [136, 
137]:

where Yi is the dependent variable at location i , (ui, vi) 
is the spatial coordinates of location i , βbwk

(ui, vi) is the 
local regression coefficient for the k th independent vari-
able at location i , bwk is the optimal bandwidth assigned 
for the k th explanatory variable, εi is the random error 
term at location i.

In this study, the open-source software QGIS (ver-
sion 3.34.2) [138] is used for geospatial data processing 
and mapping; the open-source software RStudio with the 

(6)Yi = βbw0
(ui, vi)+

n
∑

k=1

βbwk
(ui, vi)xik + εi,

programming language R (version 4.3.2) [139] is used for 
statistical data processing and modelling.

Results
Model performance comparison
The results of the global MLR model are summarised in 
Table 3. The Variance Inflation Factor (VIF) is calculated 
to detect issues of multicollinearity among explanatory 
variables. The VIF values are between 1.359 and 2.450, 
which are below the common threshold of 5, suggesting 
low level of multicollinearity that does not bias model 
estimates. On residuals of MLR, Moran’s I is statistically 
significant at 0.174 and Geary’s C is statistically significant 
at 0.876, both suggesting significant positive spatial 
autocorrelation is present. This indicates MLR’s error 
terms are spatially correlated, hence renders the global 
MLR model unsuitable for explaining this relationship. 
The SEM shows a positive � value statistically significant 
at 0.41016 (p = 0.00025663), which further demonstrate 
spatial dependence matters in explaining variations in 
the dependent variable, thus validating the advantages 
of GWR and MGWR in investigating this relationship. 
Therefore, the GWR and MGWR models are developed 
to investigate the spatially varying relationship between 
domestic energy consumption and the explanatory 
variables across Nottingham LSOAs.

Table  4 compares the goodness-of-fit of the MLR, 
GWR, and MGWR models using the same explanatory 
variables, with diagnostic measures of AICc and residual 
sum of squares (RSS). The MLR yields a low coefficient 
of determination, an adjusted R2 of 0.573, indicating 
42.7% of variations in domestic energy consumption 
remain unexplained. For the GWR model using adaptive 
bandwidth, comparing to MLR, values of RSS and AICc 
decreased while the adjusted R2 increased slightly to 
0.589, indicating a better model fit. For the MGWR 
model assigning individual spatial scales for each 
explanatory variable, RSS and AICc further decreased to 
the lowest values, and the adjusted R2 increased to the 
highest value of 0.754, demonstrating the best model fit 
of all.

Table 3 MLR results with significant positive spatial correlations 
detected in model residuals

* p < 0.1; **p < 0.05; ***p < 0.01

Coefficient VIF p-values

Household.3.or.more.people 9,311 2.280 0.818

Income 161 ** 2.344 0.038

Unemployed 242,353** 2.048 0.038

Fuel.poverty −11,730 1.954 0.798

Social.rented −67,775*** 2.166 0.003

Bedrooms.4.or.more 411,999*** 2.450 0.0000004

Dwelling.terraced 12,335 1.964 0.572

Energy.efficiency.score −246,906*** 1.640 0.001

Heating.renewable.energy 113,096 1.359 0.848

Heating.district.heating −178,944*** 1.573 0.00008

Intercept 25,450,754*** – 0.00005

Observations 175 –

Moran’s I of Residuals 0.174*** 0.00006

Geary’s C of Residuals 0.876** 0.01546

Table 4 Model fit of MLR, GWR, MGWR 

MLR GWR MGWR 

AICc 5782 5780 5737

R2 0.597 0.647 0.847

Adjusted R2 0.573 0.589 0.754

RSS 1.97E + 15 1.73E + 15 7.51E + 14
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Spatial scales of explanatory variables in GWR and MGWR 
The optimal bandwidths of explanatory variables in GWR 
and MGWR are compared in Table  5. GWR’s adaptive 
bandwidth is relatively large at 161, suggesting the spatial 
scale fitted to all explanatory variables covers 92% of the 
175 Nottingham LSOAs. In comparison, the optimal 
bandwidths chosen in MGWR reveal more nuancedly 
varied spatial scales among the explanatory variables.

For the MGWR, the smallest bandwidths are found in 
energy efficiency score (18, covering 10.3% Nottingham 
LSOAs) and household of 3 or more people (22, 12.6%), 
which indicates effects of these two explanatory vari-
ables on domestic energy consumption are most local at 
the smallest spatial scales. Income and fuel poverty are 
also discovered to have relatively smaller bandwidths 
of 61 (34.9%) and 73 (41.7%), indicating they also affect 
domestic energy consumption more locally at smaller 
spatial scales. The rest of the explanatory variables have 

relatively larger optimal bandwidths: for unemployment 
this is 165 (94.3%), and the rest is 173 (98.6%), including 
social rented, 4-or-more bedrooms, terraced dwellings, 
renewable energy, and district heating.

Spatial variability of local relationships in GWR and MGWR 
The local coefficients of explanatory variables in GWR 
and MGWR are summarised in Table 6. Figure 2 stand-
ardises data in Table 6 to show variability of local coef-
ficients in GWR (blue) and MGWR (black). It compares 
the influence of explanatory variables’ effects in the two 
models, where larger positive values and smaller negative 
values are more influential. The variables are ordered by 
the median values of their standardised local coefficients 
for easier comparison, the red vertical line denoting value 
0 highlights explanatory variables with bidirectional 
local relationship, grey dots represent outliers. Heatmaps 
in Fig.  3 further compare patterns of explanatory vari-
ables’ effects on domestic energy consumption in GWR 
(Fig. 3a) and MGWR (Fig. 3b), by visualising their stand-
ardised local coefficients in rows of Nottingham LSOAs 
and columns of explanatory variables. They are ordered 
so that values of greater similarity are near each other, 
to highlight patterns denoted by dendrograms of hierar-
chical clustering trees on heatmaps’ margins [140]. This 
is controlled using the “optimal-leaf-order” seriation 
rotating the branches to minimise the sum of distances 
between each adjacent leaf with the R package heatmaply 
[141]. For GWR, the most influential driving factors are 
4-or-more bedrooms, income, social-rented, district 
heating, and energy efficiency score. For MGWR, the 
most influential ones are found to be energy efficiency 
score, 4-or-more bedrooms, social-rented, income, and 
unemployment.

Table 5 Comparison of optimal bandwidths in GWR and MGWR 

Bandwidth

GWR MGWR 

Household.3.or.more.people 161 22

Income 161 61

Unemployed 161 165

Fuel.poverty 161 73

Social.rented 161 173

Bedrooms.4.or.more 161 173

Dwelling.terraced 161 173

Energy.efficiency.score 161 18

Heating.renewable.energy 161 173

Heating.district.heating 161 173

Intercept 161 173

Table 6 Summary of model coefficients of GWR and MGWR 

GWR MGWR 

Min Mean Max Min Mean Max

Household.3.or.more.people −13846.1 30021.5 64007.7 −448579.3 −20988 238211.7

Income 116.5 210.4 313.3 −115.4 200.6 474.7

Unemployed 121366.6 203156.6 325301.7 210485.7 258386.7 331162.9

Fuel.poverty −110787.7 −44604.5 53025 −126273.2 −3100.7 107977.5

Social.rented −84893.5 −73969.1 −45452.1 −104358.3 −100874.9 −92324

Bedrooms.4.or.more 314349 381836.3 515053.1 418369.5 428593.6 438475.6

Dwelling.terraced −21154 20480.3 62696.6 32353.3 38683.5 46304.4

Energy.efficiency.score −415979.3 −250336.6 −129345.7 −2479471 −488074.4 562632.2

Heating.renewable.energy −418733.6 96092.6 510910.6 −165766.6 −11625 169107.7

Heating.district.heating −247768.3 −174416 −132806.1 −68662.5 −64505.4 −61549.6

Intercept 14378551.9 24839514.1 32323635.4 −30422982 42031811.6 170034083
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For GWR, 3 explanatory variables are found with 
positive effects on domestic energy consumption vary-
ing spatially across Nottingham LSOAs: 4-or-more 
bedrooms, income, and unemployment; meanwhile, 3 
are found with spatially varied negative effects: district 
heating, social-rented, and energy efficiency scores. 
For explanatory variables with spatially heterogeneous 
effects, 4 are discovered in GWR: fuel poverty, whose 
local coefficients are mostly negative while switched 
to positive after the start of its last quantile; terraced 
dwellings, whose local coefficients are mostly posi-
tive though with nearly half of the first quantile being 
negative; households of 3 or more people, mostly posi-
tive while nearly half of the first quantile being nega-
tive, which is similar to terraced dwellings though less 
influential overall; and renewable energy, which has 
negative local coefficients in all of its first quantile 
while others being positive.

For MGWR, 3 variables have spatially varied positive 
effects: 4-or-more bedrooms, unemployment, terraced 
dwellings; whilst spatially varying negative effects 
are found with social-rented and district heating. 
Spatially heterogeneous bidirectional relationships are 
found with 5 variables. For dwelling energy efficiency, 

different from all negative GWR local coefficients, 
the last quantile of its MGWR local coefficients is 
surprisingly positive. For households of 3 or more 
people, over half of its local coefficients are negative 
while the rest being positive, which is also different 
from GWR results with far fewer negative coefficients. 
For income, very different from all negative 
coefficients in GWR results, in MGWR most of its 
coefficients remain positive while nearly half of its first 
quantile negative. For fuel poverty, like households 
of 3 or more people, nearly half of its coefficients are 
negative while the rest positive, in GWR only some of 
the last quantile turned positive. For renewable energy, 
also different from GWR, in MGWR nearly half are 
positive while the rest of its local coefficients negative.

Spatial distribution of local relationships in MGWR 
To further investigate the spatial variations in the 
relationship between domestic energy consumption and 
explanatory variables discovered in MGWR, choropleth 
maps of standardised local coefficients are developed to 
examine the spatial distribution of local relationships.

Figure 4 maps standardised local coefficients of explan-
atory variables with spatially varying relationships across 

Fig. 2 Variability in local coefficients of GWR (in blue) and MGWR (in black): explanatory variables ordered by median values of standardised local 
coefficients; red line denotes value 0 highlight variables with bidirectional relationships; grey dots represent outliers
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Nottingham LSOAs. A higher percentage of unemploy-
ment (Fig.  4a) elastically drives higher domestic energy 
consumption (standardised local coefficients from 0.128 
to 0.202), with more influential effects in western Not-
tingham and decreasing towards eastern Nottingham. 
On the other hand, a larger percentage of social-rented 
(Fig.  4b) is elastically associated with lower domestic 
energy consumption (standardised local coefficients 
from −0.3424 to −0.3029), with more influential effects 
in northern Nottingham and decreasing towards south-
ern Nottingham. The percentage of dwellings with 4 or 
more bedrooms (Fig. 4c) shows elastically positive effects 
(standardised local coefficients from 0.4163 to −0.4363), 
with a similar spatial pattern to social rented. The last 
two dwelling variables display reverse spatial patterns 
in their effects on domestic energy consumption, while 
the percentage of terraced dwellings (Fig. 4d) has elasti-
cally positive effects (standardised local coefficients from 
0.103 to 0.147), with most influential in the eastern and 
southern then descending towards the north-western. 
Whereas percentage of district heating (Fig. 4e) has elas-
tically negative effects (standardised local coefficients 
from −0.09661 to −0.0866), which is most influential in 

the western and northern areas then descending towards 
the south-eastern Nottingham LSOAs.

Figure  5 maps the standardised local coefficients of 
explanatory variables with spatially heterogeneous rela-
tionships across Nottingham LSOAs. Among them the 
percentage of households with 3 or more people (Fig. 5a) 
and dwelling energy efficiency (Fig.  5d), with stand-
ardised local coefficients from −0.829 to 0.44 and from 
−2.107 to 0.4781, respectively, demonstrate similar spa-
tial patterns: a smaller proportion of LSOAs with positive 
effects are scattered in the north and towards the periph-
ery, while a larger proportion of LSOAs with negative 
effects cover the rest. The other three variables share the 
spatial patterns that diverge in certain directions. Spe-
cifically, income (Fig. 5b) (standardised local coefficients 
from −0.114 to 0.467) positively affects domestic energy 
consumption in southern, eastern, and north-eastern 
Nottingham with decreasing influence, then turned 
to negative effects with increasing influence towards 
the north-western. Fuel poverty (Fig.  5c) and renew-
able energy (Fig. 5e) (standardised local coefficients from 
−0.1907 to 0.163 and from −0.0163 to 0.0166, respec-
tively), have similar spatial directions of divergence: 
domestic energy consumption is positively affected 

Fig. 3 Heatmap of standardised local coefficients: comparison of effects on domestic energy consumption between a GWR and b MGWR 
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towards southern and eastern with increasing influence 
while negatively so towards western LSOAs, with the dif-
ference that effects of fuel poverty are also influentially 
positive in northern LSOAs, though this is mostly nega-
tive for renewable energy.

Discussion
The spatially varying driving factors of domestic energy 
consumption
In summary, the global MLR model with spatial 
correlation in its residuals is insufficient to explain the 
relationship between domestic energy consumption and 
its driving factors. In contrast, the local models, GWR 
and MGWR, both outperform the MLR model, with 
MGWR providing the best model fit and shedding light 
on the spatial variations in this relationship.

On spatial variability of how domestic energy 
consumption is driven, the findings echo those of 
existing studies using GWR in two other countries. 
Mashhoodi et al. [84] on household energy consumption 
and Mashhoodi and van Timmeren [85] on respective 
household gas and electricity consumption, using GWR 

at neighbourhood level in the Netherlands, both find how 
consumption is driven varies spatially by environment, 
dwelling, and household characteristics. Similarly, Jo 
and Kim [83], using GWR at administrative district level 
in Seoul, Korea, find influences of demographic, socio-
economic, building, and environmental variables on 
electricity consumption varies spatially. On the different 
spatial scales of how driving factors influence domestic 
energy, the findings echo those of Jo and Kim [83], whose 
MGWR finds household size of more than three people 
have smaller space scale, though differ from them on 
income with larger spatial scale.

This study does have several limitations. For data used, 
income data are from 2020, whereas all other variables 
are from 2021. On data level, income and energy 
efficiency score are converted to LSOA level from their 
original sources at the less granular MSOA level. For 
study area coverage, Nottingham is only one of the cities 
in England and more urban and rural areas could be 
studied.

The findings are generally consistent with existing 
research, while offering nuanced insights into aspects 
that have produced inconclusive results in other studies. 

Fig. 4 The spatially varying effects of explanatory variables on domestic energy consumption in MGWR: spatial distribution of standardised local 
coefficients of a unemployed; b social rented; c dwellings with 4 or more bedrooms; d terraced dwellings; e central heating type of district heating
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Below, the potential reasons and lessons learned from the 
discovered local dynamics are further discussed, followed 
by proposed policy actions for fair and effective domestic 
energy decarbonisation and transition to net zero.

Dealing with socio-technical uncertainties: renewable 
energy and district heating
For dwelling characteristics contributing to socio-
technical uncertainties in domestic energy consumption, 
expected results are found for two variables, consistent 
with other studies: a higher percentage of dwellings 
with higher-than-average bedrooms (4 or more) leads to 
higher consumption [12, 16], while a higher percentage 
of terraced dwellings with shared walls is linked to lower 
consumption [15]. However, for renewable energy, 
this study unexpectedly finds that in almost half of 
Nottingham LSOAs, a higher percentage of households 
with renewable energy as central heating corresponds to 
higher consumption. This may suggest that the energy 
efficiency of renewable energy systems and dwellings 
in those areas is not adequate to realise the potential 
of renewable heating for decarbonisation [142], or the 
residents are not using the renewable heating systems 

correctly, possibly due to a lack of understanding of how 
to [143]. For these local areas, this study recommends 
promoting information on the efficient usage of 
renewable heating systems and rolling out energy 
efficiency schemes.

For district heating, its consistent negative spatially 
varied effects on domestic energy consumption across 
all Nottingham LSOAs are as expected. Considering 
domestic energy consumption in the data is calculated 
as the total of gas and electricity consumption, and DH 
supplies hot water and space heating in homes [144], 
effects of the DH variable represent low-carbon energy 
consumption for hot water and heating in places with 
DH [145]. DH’s MGWR local coefficients indicate that a 
1% increase in households with DH results in an average 
reduction in domestic energy consumption of 61,549.6 
kWh, with spatially varied reductions ranging from 
64,505.4 to 68,662.5 kWh (Table  6) across Nottingham 
LSOAs. This indicates district heating is very beneficial 
for decarbonising energy consumption. Considering the 
mean coverage rate of DH is less than 2.6% (Table  2) 
across Nottingham LSOAs, to strengthen DH’s beneficial 
effects on decarbonisation discovered for all local areas, 

Fig. 5 The spatially heterogeneous effects of explanatory variables on domestic energy consumption in MGWR: spatial distribution of standardised 
local coefficients of a households with 3 or more people; b income; c fuel poverty; d dwelling energy efficiency; e central heating with renewable 
energy
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this study recommends extending existing Nottingham 
low-carbon DH networks and the development of new 
DH projects.

Addressing socio-economic uncertainties: unemployment 
and social housing
For household characteristics contributing to socio-
economic uncertainties in domestic energy consumption, 
unemployment is found to have consistent positive 
spatially varied effects, which echoes previous research 
findings [146]. This may result from occupancy patterns 
in households of different employment status, with 
the unemployed having the longest active hours [4]. 
To benefit unemployed households and others on low 
incomes, this study recommends promoting subsidised 
schemes to switch central heating systems to renewable 
energy and district heating but also to promote domestic 
energy efficiency improvements.

On social housing, this study finds a higher percentage 
of social rented has consistent negative spatially varied 
effects on domestic energy consumption, echoing 
existing literature [14]. This may result from the overall 
better energy efficiency of social housing compared 
to other housing tenures in England [109]. However, 
previous research on Nottingham social housing found 
that while retrofit schemes improved dwelling energy 
efficiency, they did not deliver the expected reduction 
in energy costs for social-rented households [147]. This 
indicates the finding on social housing may also result 
from potential energy needs not being adequately fulfilled 
due to economic restraints. To benefit social-rented 
households, this study suggests providing incentives to 
reduce energy bills in combination with energy efficiency 
improvement schemes.

Recognising dynamics across socio-economic 
and socio-technical uncertainties: income, dwelling energy 
efficiency, and fuel poverty
The dynamics across household and dwelling factors con-
tributing to socio-economic and socio-technical uncer-
tainties in driving domestic energy consumption [9] are 
further highlighted in the findings. For instance, a higher-
than-average household size (3 or more people) is found 
to have a spatially heterogeneous bidirectional relation-
ship with domestic energy consumption. This finding 
provides a nuanced interpretation of the currently incon-
clusive results in existing literature [4, 12, 13, 18, 19]. It 
also reflects how household size affects domestic energy 
consumption, which is influenced by the dynamics 
between household size and other factors such as dwell-
ing types and the number of rooms [146]. Similar dynam-
ics are observed in income, dwelling energy efficiency, 
and fuel poverty.

Income is identified as a significant factor positively 
driving domestic energy consumption in existing studies 
[4, 12, 15, 16], and this study’s findings are consistent 
with that finding for most Nottingham LSOAs. However, 
for the remaining LSOAs, income exhibits spatially 
varied negative relationships, similar to the pattern 
observed with dwelling energy efficiency. Consistent 
with previous studies [14, 15, 18], this study finds that 
better energy efficiency generally leads to lower domestic 
energy consumption in most Nottingham LSOAs. 
However, in a quarter of LSOAs, the local patterns 
are reversed, with better dwelling energy efficiency 
associated with higher domestic energy consumption. 
These irregularities reflect the complex dynamics across 
household and dwelling factors that contribute to socio-
economic and socio-technical uncertainties in driving 
domestic energy consumption. Webber et  al. [148] find 
that the actual impacts of energy efficiency schemes on 
domestic energy consumption vary by income, with 
low-income areas showing consistent impacts, while 
areas with middle and higher incomes experience higher 
impacts. Bergman and Eyre [149] discuss the situation 
of socio-technical ‘lock-in’, where the industry’s focus on 
maximising energy sales and individuals’ lack of access to 
the best information on energy saving contributes to the 
disconnect between occupant behaviour and domestic 
energy consumption in the UK. Pelenur and Cruickshank 
[150] explore the residential energy efficiency gap, finding 
a strong association between demographic variables 
and barriers to installing energy efficiency measures in 
dwellings cross large UK cities.

Considering fuel poverty is the situation where access 
to adequate energy is lacking, and the indicator LILEE 
estimates fuel poverty by low income and low energy 
efficiency [116], this study expected higher percentage of 
fuel poor households leads to lower consumption, as they 
cannot afford to use as much energy as they need. This is 
found to be the case for only half of Nottingham LSOAs 
in eastern Nottingham. For the rest, however, a higher 
percentage of fuel poor households spatially leads to 
higher energy consumption. This may suggest while fuel 
poor households cannot afford to use adequate energy, 
they still must use more to keep at even an inadequate 
level despite the rising energy costs [151]. This may 
indicate the strong influence of inefficient housing 
energy efficiency in these areas, and further reflects the 
importance to recognise the needs of vulnerable groups, 
and provide them with access to energy efficiency 
schemes, so that co-benefits of improved health and 
reduced emissions can be generated [152].

Therefore, for local areas where better energy efficiency 
leads to higher energy consumption, and places where 
lower income leads to higher consumption, this study 
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recommends promoting information on energy sav-
ing measures and making them accessible for people to 
benefit from, while rolling out subsidised programmes 
to switch central heating to renewable energy and dis-
trict heating. For local areas where a higher level of fuel 
poverty leads to a higher energy consumption, this study 
recommends prioritising domestic energy efficiency 
improvement with incentives for energy cost reduction.

Conclusions
This study develops local spatial statistical models 
GWR and MGWR to investigate spatial variations in 
the relationship between domestic energy consumption 
and its driving factors on household and dwelling 
characteristics across Nottingham LSOAs. As one the 
first UK studies using MGWR on domestic energy 
consumption, this research addresses gaps in spatial 
design and local variability identified in reviewed 
literature. Results from the best model MGWR show 
widespread spatial variability in all variables tested 
for this relationship, and counterintuitively, spatial 
heterogeneity in half of the tested explanatory variables.

Whilst this study focuses on Nottingham, the findings 
may also have significance for policy and future research 
on domestic energy consumption covering varied 
areas and levels of analysis. Notably, this study finds 
domestic energy consumption is driven by factors at 
different spatial scales, including some very locally, and 
with patterns that are spatially varied or even spatially 
heterogeneous for characteristics on both dwellings 
and households. This suggest the “one-size-fit-all” type 
of policy plans may not be the most suitable option for 
achieving envisioned outcomes of rapid and fair domestic 
energy decarbonisation. Based on the findings, this study 
therefore recommends placed-based approaches and 
more local deliberations in devising policies for domestic 
energy decarbonisation and more broadly energy 
transition to net zero. Specifically, this study makes the 
following place-based policy suggestions to address 
socio-technical and socio-economic uncertainties for 
effective and fair domestic energy decarbonisation 
in Nottingham. Where district heating is in place, it 
should be extended. The effects of renewable energy 
sources are ambiguous across different groups: where 
energy costs increase, households need focused support 
and incentives to get bills down. Alongside focusing on 
renewable energy and district heating, it is important 
not to neglect energy efficiency upgrades to properties, 
especially for those on low incomes.

This study highlights potential avenues for future 
research. Its approach could be expanded to wider study 
areas, such as including a collection of local authorities in 
both urban and rural areas, to make comparisons across 

different places and to help inform a wider range of 
stakeholders. The approach may also be applied to other 
spatial levels to further investigate local relationships and 
how they vary spatially. For instance, this could involve 
examining more granular levels such as Output Areas 
or postcodes. Future research areas include examining 
final energy demand issues related to conversion losses 
and heating types, analysing the dwelling stock structure 
in domestic energy consumption in greater details, and 
investigating DH energy usage at local and household lev-
els to understand its impact on energy decarbonisation.
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